抛物型偏微分方程的定解问题 为了确定一个具体的热传导过程,除了列出方程(1)以外,还必须知道物体Ω的初始温度(初始条件)和在它的边界嬠Ω上所受到的外界的影响(边界条件)。初始条件:边界条件,最通常的形式有三类。第一边界条件(或称狄利克雷条件):即表面温度为已知函数。第二边界条件(或称诺伊曼条件):式中n是Ω的外法向,即通过表面的热量已知。第三边界条件(或称罗宾条件):式中α≥0;即物体表面给定热交换条件。除了以上三类边界条件外还可以在边界嬠Ω上给定其他形式的边界条件,如斜微商条件、混合边界条件等。方程(1)连同初始条件(2)以及边界条件(3)、(4)、(5)中的任意一个一起构成了一个定解问题,根据边界条件的不同形式,分别称为第一、二、三边值问题,统称为热传导方程的初边值问题或混合问题。若Ω呏R3,则由方程(1)和初始条件(2)构成的定解问题称为热传导方程的初值问题或柯西问题。
微分方程的特征方程怎么求的?
matlab怎么求解偏微分方程 matlab怎么求解偏微分方程 Matlab偏微分方程工具箱应用简介1.概述本文只给出该工具箱的函数列表,读者应先具备偏微分方程的基本知识,然后根据本文列出的函数查阅Matlab的...
为什么要化偏微分方程为标准型,解偏微分方程的时候需要先化为标准型再求解吗? 为了规范。统一求解模式。方便理解。
求解二维抛物线型偏微分方程matlab程序 function[u,x,y,t]=TDE(A,D,T,ixy0,bxyt,Mx,My,N) 解方程 u_t=c(u_xx+u_yy)for D(1)(2),D(3)(4),0 初值:u(x,y,0)=ixy0(x,y) 边界条件:u(x,y,t)=bxyt(x,y,t)for(x,y)cB Mx/My:x轴和y轴的等分段数 N:t 轴的等分段数 dx=(D(2)-D(1))/Mx;x=D(1)+[0:Mx]*dx;dy=(D(4)-D(3))/My;y=D(3)+[0:My]'*dy;dt=T/N;t=[0:N]*dt;初始化u for i=1:Mx+1 for j=1:My+1 u(i,j)=ixy0(x(i),y(j));end end rx=A*dt/(dx*dx);rx1=1+2*rx;rx2=1-2*rx;ry=A*dt/(dy*dy);ry1=1+2*ry;ry2=1-2*ry;for i=1:Mx-1%(11.2.21a) P(i,i)=ry1;if i>1 P(i-1,i)=-ry;P(i,i-1)=-ry;end end for j=1:My-1%(11.2.21b) Q(j,j)=rx1;if j>1 Q(j-1,j)=-rx;Q(j,j-1)=-rx;end end for k=1:N u_1=u;t=k*dt;for i=1:Mx+1%边界条件 u(i,1)=feval(bxyt,x(i),y(1),t);u(i,My+1)=feval(bxyt,x(i),y(My+1),t);end for j=1:My+1 u(1,j)=feval(bxyt,x(1),y(j),t);u(Mx+1,j)=feval(bxyt,x(Mx+1),y(j),t);end if mod(k,2)=0 for i=2:Mx j=2:My;bx=[ry*u(i,1)zeros(1,Mx-3)ry*u(i,My+1)]+rx*(u_1(i-1,j)+u_1(i+1,j))+rx2*u_1(i,j);u(i,j)=linsolve(P,bx');(11.2.21a) end else for j=2:My i=2:Mx;by=[rx*u(1,j);zeros(My-3,1);rx*u...
跪求MATLAB解抛物型偏微分方程的程序 1,不一定有效果,因为pdetool具体编程是不知道的,如果解决小问题两者的结果一样说明不了什麽问题,尤其对于偏微分方程。2有限元的边界必须固定,从数理方程上讲静态有限元问题就是边值问题,如果边界变化的话,初始一下别的专业有限元软件,比如anasys,adima等。
请问具体如何区分,抛物型偏微分方程,双曲型偏微分方程,椭圆型偏微分方程? 依次是椭圆型,双曲型,双曲型 AUxx+BUxy+CUyy+.=0 Δ=B^2-4AC Δ=0:抛物型 Δ>0:双曲型 Δ
总结偏微分方程的解法 可分为两大分支:解析解法和数值解法。只有很少一部分偏微分方程能求得解析解,所以实际应用中,多求数值解。数值解法最常见的有三种:差分法(最普遍最通用)、有限体积法、有限元法,其他数值解法还有:正交配置法、微扰法(可解薛定谔方程)、变分法等等。向左转|向右转扩展资料:导数(Derivative)是微积分学中重要的基础概念。对于定义域和值域都是实数域的函数f:R→R,若f(x)在点x 0 的某个邻域△x内,极限定义如下 f′(x 0)=△x→0lim△xf(x 0+△x)?f(x 0)(1.1)若极限存在,则称函数f(x)在点x 0 处可导,f′(x 0)称为其导数,或导函数,也可以记为 dxdf(x 0)。在几何上,导数可以看做函数曲线上的切线斜率。给定一个连续函数,计算其导数的过程称为微分(Differentiation)。微分的逆过程为积分(Integration)。函数f(x)的积分可以写为 F(x)=∫f(x)dx(1.2) 其中F(x)称为f(x)的原函数。若函数f(x)在其定义域包含的某区间内每一个点都可导,那么也可以说函数f(x)在这个区间内可导。如果一个函数f(x)在定义域中的所有点都存在导数,则f(x)为可微函数(Differentiable Function)。可微函数一定连续,但连续函数不一定可微。例如函数∣x∣为连续函数,但在点x=0处不...
抛物型偏微分方程的解的正则 (光滑性)若?呏0,则由初值问题解的表达式可看出,若u0(x,y,z)有界连续,则初值问题(1)、(2)的解u(x,y,z,t)当t>0时都是无穷次连续可微的,而且关于空间变量x,y,z是解析的,关于时间变量t属于谢弗莱二类函数,即在|x|<ρ内满足 当?扝0时,热传导方程解的可微性质与?的性质有关,例如为了得到热传导方程的古典解,除了需要假定?(x,y,z,t)连续以外,还要求对x,y,z或对t是赫尔德连续的。解的渐近性 如果边界上的温度以及热源密度与时间无关(),则热传导过程将趋于稳定状态,也就是当t→时,不管什么初始条件,物体内部温度总趋于同一个极限(稳定态的温度分布u(x,y,z)),它是椭圆边值问的解。解的半群性质 热传导是一个单向的不可逆过程,热总是由高温流向低温。如果边界温度为零,S(t)表示由初始时刻的温度场映到t时刻的温度场的线性解算子,由于热传导的不可逆性质,因此算子具有半群性质:①S(0)=I(I为恒同算子);②S(t+τ)=S(t)S(τ)t,τ≥0;由泛函分析中的希尔-吉田定理,存在一个相应的无穷小生成子A,S(t)=e-tA,使得具有齐次边条件的第一边值问题(1)、(2)、(3)的解具有明显的表达式,式中。
如何用Matlab解偏微分方程组该方程组由两个抛物型偏微分方程组成 这个没有自带的函数,需要把插分格式写出来以后自己编程。
随机阅读
- 无氧运动肌肉量减少 想减少身体的脂肪含量 同时增强肌肉力量 应该以有氧运动为主还是无氧运动? 运动强度 时间 多少合适?
- 我军由正规军和运动战转变为游击队和游击战的是从什么开始? 省市动员会议传达提纲
- 使用金蝶系统如何进行固定资产卡片查询 金蝶固定资产卡片如何打印
- 王国纪元每天都耍最快几天17级 《王国纪元》宝箱概率技巧性使用
- 济南山东大学齐鲁医院王立杰医生评价怎么样 潍坊 王立杰是哪里的
- 死杂种滚 在《荒野大镖客 2》中有哪些有趣的细节?
- 隆胸是永久性的吗?
- 永丰余分公司 世界上最大的造纸厂在哪啊?
- 西宁工商行政管理局 青海新闻网请问西宁城西区工商局电话多少
- 新手求助 想入18 的波纹粹竞技或者波纹鲤 求高手对比 水乡鲤真那么强悍吗
- 贞丰县劳动局电话 贞丰县投诉局的电话多少?
- 山东文登张家产镇西泊石村违法建筑谁能管得了? 张家产镇都有哪些村
- 结石医院都约云南结石病医院 我朋友之前去云南一家综合医院治疗肾结石,效果不是很理想,所以我在纠结我该去什么医院治疗胆结石,求经验!
- 氯丙醇脂 体检时说有脂肪肝问是不是化工丆的二氯丙醇
- 请教:本人中了只新股国科微300672不知好吗? 国科微在搞什么时候开始
- 劳拉与光明守护者 第三关 蜘蛛墓穴 如何达成《一次成功》? 墓穴蜘蛛
- 手压水井下水管20米吗 水井的垂直高度近40米用电动抽水机放家里或者在家里安装手压泵需要什么条件能行吗 若能行用多大的力才能够家离水井又300米的斜坡
- 除氟化学沉淀法 水处理除氟的方法都有哪些
- 请问杭州第七人民医院怎么走 我现到滨康路东 武林门到第七人民医院怎么走
- 永久a一5型山地自行车价格多少钱 几千块的山地自行车比几百块的山地自行车好在哪?