初等函数在其定义域内一定可导,对么? 初等函数在定义域内一定连续,但不一定可导。举例如下:y=|x|就是y=sqrt(x^2),它是基本初等函数y=sqrt(u)和u=x^2的复合函数,是初等函数.但y=|x|在x=0点处的左导数为-1,右导数为1,因此该函数在x=0处不可导。另举反例:y=x^.
设一个函数y=f(x),在定义域上处处可导(该函数在定义域内也处处连续),试问其导函数在其定义域上一定处处连续吗? 是的.但要证明就不是三言两语可以说得清的.简单的说,这个导函数不可能有间断点的.您可以找有关这方面的证明的书看看连续可导函数的导函数也是处处连续的看来问题还在于“定义域上”和“定义域内”这个地方,该导函数在定义域内是处处连续的,这点没问题,但这个定义域如果是开区间的话,在定义域上就不一定处处连续了.
函数在定义域上的不可导点的确定问题
函数可导指的是在定义域处处可导是吧 如果没有限定函数在某一点可导,那就是说在定义域上处处可导