质点系的总动量为零,则其对某一点的总角动量一定为零.为什么错? 若质点系的总动量为零,则其对任意一点的总角动量均相等.所以若某一点是零的话就成了对哪里都是零,显然不对啊.你举一个两个质点而且运动方向不在同一直线上的特例就知道了.总动量是零,对空间的任意一点,总角动量要么恒为零,要么恒为定值,说一定能找到某点是零,是错误的.
质点系的角动量是不是等于质心的角动量 表述角动量与力矩之间关系的定理。对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点来的力矩。对于质点系,根据牛顿第三定律,质点系内各质点间的相互作用的内力是成对出现的,服从作用和自反作用定律,因而质点系的内力对任一点的主矩为零。利用内力的这一特性,即可导出质点系的角百动量定理:质点系对任一固定点 O的角动量对时间的微商等于作用于该质点系的外力系对O点的主矩Mo,即,式中ri、mi和vi分别为质点系中第m个质点关于O点的矢径、质量和速度矢量。这度一定理中的 O点必须固定。在一般情况下,对于动点,这个定理不成立;但质点系的质心例外,关于质心的角动量定理为:质点系对于质心C的角动量为,它对时间的微商等于作用在质问点系的外力系对质心C的主矩Mσ,即式中r媴为质点系中第i个质点对质心的矢径。由角动量定答理可知,描述质点系整体转动特性的角动量只与作用于质点系的外力有关,内力不能改变质点系的整体转动运动。
质点系总动量为零时,总角动量一定为零吗,两者之间有什么关系?? 若质点系的总动复量为零,则其对任意一点的总角动量均相等。总动量是零,对空间的任意一点,总角动量要么恒为零,要么恒为定值,说一定能找到某点是零,是错误的。1、质点系的动量为0,但质点系的角动量不一定为0。它们可以做类似于太阳系这样的公转加自转的运动。2、质点系的角动量为0时,质点系的动量也不一定为0。它们可以做类似于一颗流星划过天空的平动运动。扩展资料1、动量守恒的前提是:系统受到的合外力为0。在这样的前提之下,不能排除系统受到力偶couple的影响。在力偶的作用下,系统的整体动量不变,整体的速度不变,也就是质心的速度不变,质心的动量不变。但是整体的角动量在增加。也就是说,整体的转动速度会越来越快。2、角动量守恒的前提是:系统受到的合外力矩为0。在这样的前提下,不能排除系统整体上受到一个合外力的作用,而仅仅只是合外力的力矩为0。合外力作用在质心上,系统虽未转动加速,但却平动加速了,此时动量守恒,而角动量却守恒。