ZKX's LAB

氢光谱测量 原子吸收法为什么不能测碳和氢?

2021-04-27知识10

氢原子光谱的光谱线公式 1885年瑞士物理学家J.巴耳末首先把上述光谱用经验公式:λ=Bn2/(n2-22)(n=3,4,5,·)表示出来,式中B为一常数。这组谱线称为巴耳末线系。当n→时,λ→B,为这个线系的极限,这时邻近二谱线的波长之差趋于零。1890年J.里德伯把巴耳末公式简化为:1/λ=RH(1/22-1/n2)(n=3,4,5,·)式中RH称为氢原子里德伯常数,其值为(1.096775854±0.000000083)×107m-1。后来又相继发现了氢原子的其他谱线系,都可用类似的公式表示。波长的倒数称波数,单位是m-1,氢原子光谱的各谱线系的波数可用一个普遍公式表示:σ=RH(1/m2-1/n2)对于一个已知线系,m为一定值,而n为比m大的一系列整数。此式称为广义巴耳末公式。氢原子光谱现已命名的六个线系如下:莱曼系 m=1,n=2,3,4,·紫外区 巴耳末系 m=2,n=3,4,5,·可见光区 帕邢系 m=3,n=4,5,6,·红外区 布拉开系 m=4,n=5,6,7,·近红外区 芬德系 m=5,n=6,7,8,·远红外区 汉弗莱系 m=6,n=7,8,9,·远红外区 广义巴耳末公式中,若令T(m)=RH/m2,T(n)=RH/n2,为光谱项,则该式可写成σ=T(m)-T(n)。氢原子任一光谱线的波数可表示为两光谱项之差的规律称为并合原则,又称里兹组合原则。对于核外只有一个电子的类氢原子(如He+,Li2+。

如何评价 CERN 获得反物质(反氢)迄今为止最高精度的光谱测量? 原文:https://www.nature.com/articles/s41586-018-0017-2科学网评论:科学家高精度测量反物质

如何利用测量的氢光谱线计算相应的里德伯常数 本文讨论了氢原子光谱实验2113中里德伯常数的几种不同的5261数据处理方法。理论4102上定量分析了不同算法的不确1653定度及置信水平,得出了应用不同波长求出里德伯常数后再采用加权最小二乘平均得到里德伯常数的最小方差无偏估计的算法较为合理的结论,并以原始实验数据进行了验证

#氢光谱有什么用#氢光谱#氢光谱测量#氢光谱李永乐#氢光谱的特点

随机阅读

qrcode
访问手机版