高分求:用双线性变换法设计原型低通为椭圆型的数字IIR带通滤波器 p1=400;p2=500;通带边界频率s1=350;s2=550;阻带截止频率Ap=1;通带最大衰减As=40;阻带最小衰减Ft=2000;抽样频率T=2;wp1=2*pi*p1/Ft;wp2=2*pi*p2/Ft;ws1=2*pi*s1/Ft;ws2=2*pi*s2/Ft;Wp1=(2/T)*tan(wp1/2);Wp2=(2/T)*tan(wp2/2);Ws1=(2/T)*tan(ws1/2);Ws2=(2/T)*tan(ws1/2)W0=Wp1*Wp2;w0=sqrt(W0);BW=Wp2-Wp1;带通滤波器的通带宽度lp=1;归一化处理ls=Ws1*BW/(W0-Ws1^2);[N,Wn]=ellipord(lp,ls,Ap,As,'s');[B,A]=ellip(N,1,40,Wn,'s');[BT,AT]=lp2bp(B,A,w0,BW);[num,den]=bilinear(BT,AT,0.5);[z,p,k]=tf2zp(num,den);figure(1);zplane(z,p);title('零极点')[h,w]=freqz(num,den,512);figure(2)plot(w/pi,20*log10(abs(h)));axis([0 1-100 1]);title('频谱特性曲线')gridn=0:800;k=n/8000;通过滤波器3f1=2*pi*450;f2=2*pi*6000;x=sin(f1*k)+sin(f2*k);y=filter(num,den,x);x1=sin(f1*k)figure(3)plot(x1);x1图形输出axis([0,100*pi,-5,5]);title('x1(t)');x2=sin(f2*k);figure(4)plot(x2);x2图形输出axis([0,100*pi,-5,5]);title('x2');figure(5)plot(x);axis([0,100*pi,-5,5]);title('输入信号');figure(6)plot(y);axis([0,100*pi,-5,5]);title('输出信号')。
lc低通滤波器归一化表 用butterworth就可以了,简单又方便椭圆函数归一化参数已经由萨尔(Saal),乌尔布里克(Ulbrich)和兹维里夫等人广泛制表。在ieee网站上可以查到椭圆函数-Elliptic滤波器的归一化设计参数数据。
椭圆低通滤波器基于matlab设计程序如下,求每句注释%连续信号的产生及采样clearFs=100;t=(1:100)/Fs;s1=sin(2*pi*t*5);s2=sin(2*pi*t*15);s3=sin(2*pi*t*30);。