ZKX's LAB

请问散射线是什么意思,与反射线有什么区别? 射线的反散射峰能量怎么算

2020-07-19知识15

请问散射线是什么意思,与反射线有什么区别? 额,怎么说呢,先说反射线吧,这是简单,就是入射角等于出射角的那个,理想状态下,镜面是100%反射的,有一定通透性的话是折射+反射(即使不是平面的漫反射,在微观下也是。γ射线的散射作用 γ射线通过物质时除产生光电效之外,还有一部分光子与物质原子相互作用,产生两种方式的散射。一种是散射后能量不变,仅改变运动方向的称弹性散射(又称相干散射);另一种是能量和运动方向都发生变化的散射,称康普顿散射(又称非相干散射)。γ(或X)射线是波长很短的电磁波,与物质原子相互作用迫使原子中电子和原子核随入射γ射射线电磁波周期变化的电磁场而发生振动。原子核质量大,其振动可以忽略不计;主要是壳层电子随着频率一致的振动,这些振动的电子就成了新的电磁波源,发射波长和相位与入射γ射线完全一样。宏观地看,就像入射γ射线产生了弹性散射,只改变运动方向,而能量不变,所以称弹性散射。又因为这样低能量的γ射线在晶体点阵中多个原子上产生散射射线的相干涉现象,所以又叫相干散射。因为是瑞利首先观察发现的,所以这种现象又叫瑞利散射。主要发生在低能(hν)区段。随着入射γ射线能量的增大,γ射线的粒子特性逐渐显著,光子与壳层电子作用,产生相干散射的几率逐渐减小。康普顿散射效应逐渐增大,以至成为主要特征。即入射γ射线与原子的壳层电子相碰撞,将一部分能量传给电子,使获得能量的电子沿γ射线入射方向成φ角射出原子之外。损失部分。伽马射线闪烁探测器有哪些? 电离室、正比计数器和G-M计数器因其探测γ射线效率很低,在测井中应用较少,使用较多的是各种闪烁计数器。1.γ射线闪烁探测器的工作原理γ射线入射到晶体上,发生光电效应、康普顿效应和电子对效应。前两种效应产生电子,后一种效应产生电子对,这些次级电子在晶体中运动,把能量消耗于晶体中,使晶体中原子电离、受激发,处于激发态的原子回到基态时,使晶体闪光,即产生荧光。荧光被光倍电增管的光阴极收集并转换成光电子,光电子经光电倍增管的各个打拿极放大,数量倍增,最终在管子的阳极负载电阻上产生电脉冲。电脉冲幅度的大小与γ射线能量成正比。因此,闪烁探测器能测量γ射线能量谱。2.闪烁探测器的能量分辨率探测器在形成输出脉冲的过程中,脉冲幅度存在着统计涨落。即使对确定的单能粒子,其脉冲幅度也具有一定的分布。通常把脉冲计数率随脉冲幅度分布的半宽度ΔV1/2与计数率最大值所对应的脉冲幅度之比,定义为脉冲幅度的分辨率。根据入射粒子能量与脉冲幅度成正比关系,能量分辨率表示为η=ΔV1/2/V。在实验室测量闪烁探测器的γ射线能量谱,一般用标准源137Cs和谱仪,纵坐标为γ射线每道计数率N,横坐标为谱仪的道数,道数正比于需要测的脉冲幅度。x射线与物质相互作用可以产生哪些效应? X射线与物质相互作用有:光电效应、康普顿效应、电子对效应a.光电效应光子将能量全部交给原子的一个轨道电子(内层电子),光子本身消失,电子摆脱束缚成为高能自由电子,此过程为光电效应。(1)不产生散射线,减少照片的灰雾。(2)增加人体不同组织和造影剂对X射线的吸收差别,利于提高诊断准确性。b.康普顿效应光子将部分能量交给原子中束缚较松弛的电子(外层电子),光子本身能量减少而成θ角度改变运动方向,称康普顿散射光子;电子获得能量后脱离原子而运动,该电子称康普顿电子或称反冲电子。(1)散射线引起图像灰雾效果。(2)需对散射线采取防护(使用滤线栅可以减小散射线影响)c.电子对效应光子有足够的能量避开与电子云的相互作用,接近到原子核,在核力场与光子的相互作用下使光子消失,而转化为一对正、负电子,这就是电子对效应。X射线的产生原理及其本质是什么?具有哪些特征? 我的研究方向是工业X射线检测,就结合工业X射线产生和成像原理进行简单的介绍。1、X射线介绍X射线也称为伦琴射线,是由德国著名物理学家威廉?康拉德?伦琴(Wilhelm R?ntgen)于1895年11月在进行阴极射线的研究时发现的。X射线本质上是与微波、红外线、可见光和紫外线等一样的电磁波,电磁波是由光子组成的,由公式可知光子的能量与其波长成反比:式中,h是普朗克常量,c是光在真空中的速度,λ是光子的波长,ν是光子的频率。X射线对应的波长范围分布在几皮米到几纳米,具有较强的穿透性,因此工业上常用X射线检测物体的内部结构。下图为X射线在电磁波谱中的分布范围:X射线除了具有所有电磁波的共性之外,还具有一些特有的性质:物理效应:(1)穿透作用;(2)电离作用;(3)荧光作用;(4)热作用;(5)干涉、衍射、反射、折射作用。化学效应:(1)感光作用;(2)着色作用生物效应。2、X射线产生原理X射线的产生有三个不可缺少的条件:第一,能够产生自由电子的电子发射器;第二,能够使自由电子加速运动的电场;第三,能够使高速移动的电子瞬间减速的靶物质。根据上述三个条件,人们发明了能够产生X射线的X射线管,射线管的结构如下图所示:X射线管主要由产生。康普顿散射————简单 康普顿散射—简单已知X射线光子的能量为0.60MeV,若在康普顿散射中散射光子的波长为入射光子的1.2倍,试求反冲电子的动能?X射线是如何产生的 X射线的产生2113分两种:1、电子的韧制辐5261射,用高能电子轰击4102金属,电子在打进金属的过程中1653急剧减速,有加速的带电粒子会辐射电磁波,电子能量很大,就可以产生x射线。2、原子的内层电子跃迁也可以产生x射线,电子从高能级往低能级跃迁时候会辐射光子,能级的能量差比较大,就发出x射线波段的光子。X射线是一种波长极短,能量很大的电磁波,X射线的波长比可见光的波长更短(约在0.001~10纳米,医学上应用的X射线波长约在0.001~0.1 纳米之间),它的光子能量比可见光的光子能量大几万至几十万倍。由德国物理学家W.K.伦琴于1895年发现,故又称伦琴射线。扩展资料:X射线的物理特性:1、穿透作用。X射线因其波长短,能量大,照在物质上时,仅一部分被物质所吸收,大部分经由原子间隙而透过,表现出很强的穿透能力。X射线穿透物质的能力与X射线光子的能量有关,X射线的波长越短,光子的能量越大,穿透力越强。2、电离作用。物质受X射线照射时,可使核外电子脱离原子轨道产生电离。利用电离电荷的多少可测定X射线的照射量,根据这个原理制成了X射线测量仪器。在电离作用下,气体能够导电;某些物质可以发生化学反应;在有机体内可以诱发各种生物效应。3、。伽马射线是什么,能量强吗? 谢邀!茫茫宇宙无边无际,宇宙中存在着较多不为人知的能量,这些能量在宇宙中发挥着不同的作用。其中,伽马射线就是一种能量,这种射线能量能够传播到宇宙空间的500亿光年之外,可想而知伽玛射线的能量之大。下面按能量强弱排名挨个进行阐述。一、伽玛射线爆伽玛射线爆堪称宇宙最强能量,太空生命或已被杀死。据媒体报道,当一颗有太阳150倍的恒星爆炸时,将会产生宇宙中最明亮的光源,在短短几秒钟内就会释放出太阳在十亿年才能释放出的能量。这相当于10的39次方吨爆炸物所释放的能量。这种爆炸会产生高能辐射粒子束,称之为伽玛射线爆发,这被天文学家认为是宇宙中最高能量之所在。这是天文学家认为在宇宙中最强大的东西。更为重要的是,伽玛射线爆发会使得我们在其他星体上发现生命的希望落空。基于伽玛射线爆发GRB 020819B所绘制的概念图态度乐观的科学家们认为,我们在宇宙中并不孤单。但如果真的有其他生命存在,那么到底为什么会寻而不见呢?有一种解释认为是在宇宙中生命是极为罕见的,其原因正是由于伽玛射线爆发在宇宙中的存在。射线爆发含有惊人的伽玛辐射粒子束,通常持续几秒钟至几分钟,最长也可持续数小时。二、γ射线γ射线的本质是高能光子,波长短于0.01埃。

#x射线#物理#康普顿#原子#电子

随机阅读

qrcode
访问手机版