内点惩罚函数为什么不适用于等式约束 定义1:p(x,q)=f(x)+qs(x)其中,p(x,q)称为惩罚函数.qs(x)为惩罚项,其中q为惩罚因子,是极限为∞的数列.在外点罚函数的求解过程中,需要用到无约束极值的优化方法,由于无法直接得到目标函数的导数,这里采用修正的Pow.
采用直接法求解约束优化问题时,新的迭代点需要同时满足什么条件 一、局部最优解与全局最优解 对于具有不等式约束的优化问题,若目标函数是凸集上的.二、起作用约束与不起作用约束 对于一般约束优化问题,其约束分为两类:等式约束和.三、约束优化问题极小点的条件 约束优化问题极小点的条件,是指在满足约束条件下,.四、库恩-塔克条件 在优化实用计算中,为判断可行迭代点是否是约束最优点,或者对输.
内点法的基本原理以及举例计算 最低0.27元开通文库会员,查看完整内容>;原发布者:yangying435一、内点法1.基本原理内点法的特点是将构造的新的无约束目标函数—惩罚函数定义在可行域内,并在可行域内求惩罚函数的极值点,即求解无约束问题时的探索点总是在可行域内部,这样,在求解内点惩罚函数的序列无约束优化问题的过程中,所求得的系列无约束优化问题的解总是可行解,从而在可行域内部逐步逼近原约束优化问题的最优解。内点法是求解不等式约束最优化问题的一种十分有效方法,但不能处理等式约束。因为构造的内点惩罚函数是定义在可行域内的函数,而等式约束优化问题不存在可行域空间,因此,内点法不能用来求解等式约束优化问题。对于目标函数为mins.t.(32313133353236313431303231363533e59b9ee7ad9431333433623766u=1,2,3,…m)的最优化问题,利用内点法进行求解时,构造惩罚函数的一般表达式为或者而对于受约束于的最优化问题,其惩罚函数的一般形式为或式中,-惩罚因子,是递减的正数序列,即通常取。上述惩罚函数表达式的右边第二项,称为惩罚项,有时还称为障碍项。说明:当迭代点在可行域内部时,有(=1,2,3,4,…m),而,则惩罚项恒为正值,当设计点由可行域内部向约束边界移动时,惩罚项。