ZKX's LAB

数学中,一致连续与连续区别是什么?与 y=x 有关吗? 高数在定义域上连续有什么性质

2020-07-27知识35

高等数学 定义域 定义域不包含0这一点,注意定义域内的点一定要保证函数表达式有意义,显然1/0是没有数学定义的。你在考虑问题的时候要注意区分f(0)和f(x)在x趋向0时的极限,这是两个完全不同的数学概念。你上面说的“sin(1/x)在x=0处是一个不定式,是有界的,”这里前提是不成立的,也就是说“sin(1/x)在x=0处”是没有数学含义的一个表述,根本谈不上有界没界的问题。如何判断分段函数在其定义域内是否连续?有什么条件吗? 而在分段点处是否连续,一般用左连续右连续来判断.比如分段点是a,分别求x从a的左侧趋于a和x从a的右侧趋于a的极限,如果都等于f(a),即满足左连续且右连续,所以在a连续,否则不连续追问:\\x0d那如果左右侧算得的值不等,但.对于高数中常说的“具有连续的偏导数”这句话怎么理解? (1)连续的偏导数,确实是指偏导数连续.(2)你理解“函数的性质”吧?比如函数的单调性质、周期性质等等.一样的,函数的连续性质是一个很好的性质,而函数的偏导数本身又是函数,所以偏导数连续作为一个很好的性质,对函数的性状是有影响的.比如,如果函数的偏导数连续,则函数就是可以微分的.回答“为什么函数的偏导数连续,则函数就是可以微分的”:这是定理,见同济高数5版下册P21.偏导数是对二元或多元函数中的某一变量求导数,将其余变量看为常数.而偏导数实际上是指偏导数函数,应看作关于求导变量的函数.所以,连续偏导数是指其偏导数函数在定义域连续,也即没有间断点.一定区域内可全微分偏导不一定连续若是全区域可全微分偏导一定连续y=x/z12,3,1/4可微分各偏导0.0.0不连续函数连续性的定义是什么?如何判定一个函数是连续的? 1.函数连续性2113的定义:设函数f(x)在点x0的某个邻域内有5261定义,若 lim(x→x0)f(x)=f(x0),则称f(x)在点x0处连续。若函数f(x)在区4102间I的每一点都连续,则称f(x)在区间I上连续。2.函数连续必须同时满足三个条件:(1)函数在x0 处有定义;(2)x->;x0时,limf(x)存在;(3)x->;x0时,limf(x)=f(x0)。则初等函数在其定义域内是连续的。扩展资料间断点的定义:间断点是指:在非连续函数y=f(x)中某点处1653xo处有中断现象,那么,xo就称为函数的不连续点。间断点可以分为无穷间断点和非无穷间断点,在非无穷间断点中,还分可去间断点和跳跃间断点。如果极限存在就是可去间断点,不存在就是跳跃间断点。1.可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义。如函数y=(x^2-1)/(x-1)在点x=1处。2.跳跃间断点:函数在该点左极限、右极限存在,但不相等。如函数y=|x|/x在点x=0处。3.无穷间断点:函数在该点可以无定义,且左极限、右极限至少有一个不存在,且函数在该点极限为∞。如函数y=tanx在点x=π/2处。4.振荡间断点:函数在该点可以无定义,当自变量趋于该点时,函数值在两个常数间变动无限多次。如函数y=sin(1/x)在x=0处。。「初等函数在其定义域内必连续」的说法是对是错,为什么? 在考研资料上看到这句话被用作证明,但总觉得怪怪的,自己的知识水平不够无法判断,求相助。如何判断一个函数是否可导具有可导性 即设y=f(x)是一个单变量函2113数,如果5261y在x=x0处左右导数分别存在且相等,则称y在x=x[0]处可导。如4102果一个函数在x0处可导,那么1653它一定在x0处是连续函数。1、设f(x)在x0及其附近有定义,则当a趋向于0时,若[f(x0+a)-f(x0)]/a的极限存在,则称f(x)在x0处可导。2、若对于区间(a,b)上任意一点m,f(m)均可导,则称f(x)在(a,b)上可导。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。扩展资料函数可导的知识点:1、所有初等函数在定义域的开区间内可导。2、所有函数连续不一定可导,在不连续的地方一定不可导。3、函数在某点的左、右导数存在且相等,则函数在该点可导。4、函数在开区间的每一点可导,则函数在开区间可导。5、设f(x)=|x-a|g(x),g(x)在x=a处连续。(1)若g(a)=0,则f(x)在x=a处可导,且导数等于0;(2)若g(a)≠0,则f(x)在x=a处不可导。6、可导函数的奇函数的导函数是偶函数,可导函数的偶函数的导函数是奇函数。函数在一点连续的定义? 1.函数连续性的定义:设函数f(x)在点x0的某个邻域内有定义,若 lim(x→x0)f(x)=f(x0),则称f(x)在点x0处连续。若函数f(x)在区间I的每一点都连续,则称f(x)在区间I上连续。2.函数连续必须同时满足三个条件:(1)函数在x0 处有定义;(2)x->;x0时,limf(x)存在;(3)x->;x0时,limf(x)=f(x0)。则初等函数在其定义域内是连续的。间断点的定义:间断点是指:在非连续函数y=f(x)中某点处xo处有中断现象,那么,xo就称为函数的不连续点。间断点可以分为无穷间断点和非无穷间断点,在非无穷间断点中,还分可去间断点和跳跃间断点。如果极限存在就是可去间断点,不存在就是跳跃间断点。1.可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义。如函数y=(x^2-1)/(x-1)在点x=1处。2.跳跃间断点:函数在该点左极限、右极限存在,但不相等。如函数y=|x|/x在点x=0处。3.无穷间断点:函数在该点可以无定义,且左极限、右极限至少有一个不存在,且函数在该点极限为∞。如函数y=tanx在点x=π/2处。4.振荡间断点:函数在该点可以无定义,当自变量趋于该点时,函数值在两个常数间变动无限多次。如函数y=sin(1/x)在x=0处。可去间断点和跳跃间断点称为第一类间断。高等数学中的初等函数的问题: 我们知道初等函数在其定义域上都是连续的,那么,除此之外,初等函数还有 没有此一说,中学阶段学的那是所谓的基本初等函数.基本初等函数在定义域上连续,而初等函数只能保证在定义区间连续,一般不能保证在定义域连续.数学中,一致连续与连续区别是什么?与 y=x 有关吗? 刚好复习到这里。连续与一致连续的区别在于二者研究的区间不一样,连续关注的是X0的开临域,一致连续则是…

#函数极限#导数#间断点#分段函数#定义域

随机阅读

qrcode
访问手机版