ZKX's LAB

对于函数x求y的协方差 相关函数的协方差的性质

2021-03-26知识9

设随机变量X的概率密度为,求函数y=arctanX与X的协方差cov(X,Y).

对于函数x求y的协方差 相关函数的协方差的性质

设随机变量Y是X的线性函数Y=aX+b,且E(X)=μ,D(X)=σ^2,求随机变量(X,Y)的协方差矩阵

求协方差的公式怎么算? X的均值里面含有一个Xi,所以两者相关要使两个无关就从X均值里面分离出Xi的成分,也就是求和时j不等于i,和式中的n分之Xi单独提到前面现在就可以展开方差而且不用求协方差拉

设随机变量Y是X的线性函数Y=aX+b,且E(X)=μ,D(X)=σ^2,求随机变量(X,Y)的协方差矩阵 Cov(X,X)=DX=σ^2Cov(X,Y)=Cov(X,aX+b)=Cov(X,aX)+Cov(X,b)=aDX+0=aσ^2Cov(Y,Y)=D(aX+b)=(a^2)(σ^2)协方差矩阵为:|Cov(X,X)Cov(X,Y)|=|σ^2 aσ^2|Cov(X,Y)Cov(Y,Y)|aσ^2(a^2)(σ^2)|

如何通俗易懂地解释「协方差」与「相关系数」的概念? 其背后的原理为何可以达到衡量「相关性」的效果?公众号:金融极客。银行IT人,爱好电影、旅行 最喜欢通俗易懂地解释一个事情。一、协方差: 可以通俗的理解为:两个变量在。

7.设Z(t)=X+Yt,-∞<t<+∞,若已知二维随机变量(X,Y)的协方差矩阵为 试求Z(t)的协方差函数. 根据第四章§4协方差矩阵的定义及题设知, ;nbsp;E[(X-μX)2]=,E[(X-μX)(Y-μY)]=ρσ1σ2,E[(Y-μY)。nbsp;nbsp;又μZ(t)=E(X+Yt)=E(X)+tE(Y)=μX+tμY, ;。

请问两个随机变量XY不独立,他们的协方差cov(X,Y)已知,请问怎么计算两者乘积的期望E(XY)? 利用协方差的公式啊COV(X,Y)=E[(X-E(X))(Y-E(Y))]=EXY-EX*EY那么EXY=COV(X,Y)+EX*EYEX,EY,COV(X,Y)都已知,就可以算出来了。如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。协方差Cov(X,Y)的度量单位是X的协方差乘以Y的协方差。而取决于协方差的相关性,是一个衡量线性独立的无量纲的数。协方差为0的两个随机变量称为是不相关的。扩展资料:若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。协方差与方差之间有如下关系:D(X+Y)=D(X)+D(Y)+2Cov(X,Y)D(X-Y)=D(X)+D(Y)-2Cov(X,Y)协方差与期望值有如下关系:Cov(X,Y)=E(XY)-E(X)E(Y)。协方差的性质:(1)Cov(X,Y)=Cov(Y,X);(2)Cov(aX,bY)=abCov(X,Y),(a,b是常数);(3)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。由协方差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个。

#对于函数x求y的协方差

qrcode
访问手机版