ZKX's LAB

证明一个函数在其定义域内可导和连续,来个例子最好 证明函数在定义域上可导

2020-07-24知识12

证明一个函数在其定义域内可导和连续,来个例子最好 怎样证明一个函数在一个区间内可导? 1、首先证明函数在区间内是连续的。2、用函数求导公式对函数求导,并判断导函数在区间是否有意义。3、用定义法对端点和分段点分别求导,并且分要证明分段点的左右导数均。请问如何证明函数在某点是否可导? 首先判断函数在这个点x0是否有定义,即f(x0)是否存在;其次判断f(x0)是否连续,即f(x0-),f(x0+),f(x0)三者是否相等;再次判断函数在x0的左右导数是否存在且相等,即f‘(x0-)=f'(x0+),只有以上都满足了,则函数在x0处才可导。函数可导的条件:如果一个函数的定义域为全体实数,即函数在其上都有定义,那么该函数是不是在定义域上处处可导呢?答案是否定的。函数在定义域中一点可导需要一定的条件:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在,它的左右极限存在且相等)推导而来。可导的函数一定连续;不连续的函数一定不可导。可导,即设y=f(x)是一个单变量函数,如果y在x=x0处存在导数y′=f′(x),则称y在x=x[0]处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数。函数可导定义:(1)设f(x)在x0及其附近有定义,则当a趋向于0时,若[f(x0+a)-f(x0)]/a的极限存在,则称f(x)在x0处可导。(2)若对于区间(a,b)上任意一点(m,f(m))均可导,则称f(x)在(a,b)上可导。证明一个函数在其定义域内可导和连续,来个例子最好 例如:y=x^2在定义域R上连续可导;y'=2x.设一个函数y=f(x),在定义域上处处可导(该函数在定义域内也处处连续),试问其导函数在其定义域上一定处处连续吗? 是的.但要证明就不是三言两语可以说得清的.简单的说,这个导函数不可能有间断点的.您可以找有关这方面的证明的书看看连续可导函数的导函数也是处处连续的看来问题还在于“定义域上”和“定义域内”这个地方,该导函数在定义域内是处处连续的,这点没问题,但这个定义域如果是开区间的话,在定义域上就不一定处处连续了.如何证明函数在定义域内有至少两个极值点 如果函数是连续可导的,则可利用f'(x)=0求出可能的极值点。然后判断该点两侧的导数值的符号是否相反,如果相反,是极值点,如果不相反,则不是。在定义域内至少有两个极值点,则f'(x)=0的解至少有2个。如果函数连续但不可导,则要先判断函数的单调性,根据函数的单调性来找极值点。在定义域内至少有两个极值点,函数在定义值的的单调区间一定要不少于3个,如增减增区间等。可导函数在定义域内一致连续吗? 这个不是的 哦,我原先在书也看到这个命题了,函数在定义域内可导则函数不一定连续,例如,分段函数,第一类可取间断点的那样的函数,就不连续,但是可导,希望楼主能够满意初等函数在其定义域内一定可导,对么? 初等函数在定义域内一定连续,但不一定可导。举例如下:y=|x|就是y=sqrt(x^2),它是基本初等函数y=sqrt(u)和u=x^2的复合函数,是初等函数.但y=|x|在x=0点处的左导数为-1,右导数为1,因此该函数在x=0处不可导。另举反例:y=x^.

#初等函数#定义域

随机阅读

qrcode
访问手机版