函数在某定义域内可导 其导函数在该定义域内也是连续的 对吗? 判断对错函数在某定义域内可导其导函数在该定义域内也是连续的对吗?不.f(x)=x^2sin(1/x),f(0)=0=>;f'(0)=0,f'(x)?
我想问一下怎么证明函数在定义域内可导,最好有具体步骤,还有怎么证明函数在定义域内连续,一直困扰我。是在定义域内不是一点。
如何判断函数可导和不可导
函数在某范围内可导怎么判断 根据导数定义,设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0)。如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数记为f'(x0),也记作y'│x=x0或dy/dx│x=x0,即如果f是在x0处可导的函数,则f一定在x0处连续,特别地,任何可导函数一定在其定义域内每一点都连续。反过来并不一定。扩展资料:设f(x)在x0及其附近有定义,则当a趋向于0时,若[f(x0+a)-f(x0)]/a的极限存在,则称f(x)在x0处可导。若对于区间(a,b)上任意一点m,f(m)均可导,则称f(x)在(a,b)上可导。如果一个函数的定义域为全体实数,即函数在其上都有定义,那么该函数是不是在定义域上处处可导呢?答案是否定的。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。参考资料来源:—可导
如何直观判断一个函数在某定义域是否可导有几阶导数? 所谓二阶导数,即原函数导数的导数.于是,假如一阶导数还能继续求导,那么当然就有二阶导数啦.你给的函数进行一阶求导以后,显然可以继续求导(它没有变成常数就可继续)二阶导数是比较理论的、比较抽象的一个量,它不像.