空间直线到直线的距离公式 对于空间中两异面直线设AA'为两直线上任意两点连线,n1,n2为两直线的方向向量两直线的距离为(n1×n2)·AA'│
点到空间直线距离公式 空间一般直线的方程是:(x-x0)/a=(y-y0)/b=(z-z0)/c,这是一条过(x0,y0,z0),方向矢量为{a,b,c}的直线.假设已知点的坐标是A(e,f,g),过A点,且与{a,b,c}垂直的平面是,a(x-e)+b(y-f)+c(z-g)=0,直线(x-x0)/a=(y-y0)/b=(z-z0)/c,与这个平面的交点是B,再由两点的距离公式求出AB,即得.
空间中线线距离 空间向量法两直线方程:A1x+B1y+C1z=0,A2x+B2y+C2z=0则对应的单位方向向量:M=(A1,B1,C1),M|=1N=(A2,B2,C2),N|=1每条线上各任取1点:A(x1,y1,z1),B(x2,y2,z2)求出向量AB=(x2-x1,y2-y1,z2-z1)设单位向量P=(A3,B3,C3),P|=1令P*M=0,P*N=0求出P则直线间距离:L=|P*AB(向量点乘)|
空间两直线间的距离公式是什么 这两条直线肯定是平行的,所以设它们在直角坐标系(X-Y)中为:y=kx+a和y=kx+b则d=|a-b|/[(1+k^2)^(1/2)](分母就是根号下1加K方)
空间中两异面直线距离公式 一堆答非所问的直线2113L1的方向向5261量为s1,L2的方向向量为s2,点4102A在直线L1上,点B在直线L2上,d=|[s1 s2 AB]|/|s1 x s2|[s1 s2 AB]为混合积1653s1 x s2为向量积
两直线间距离公式 两平行线分别为L1:Ax+By+C1=0,L2:Ax+By+C2=0在L2上任取一点P(x0,y0)则Ax0+By0+C2=0,Ax0+By0=-C2根据点到直线距离公式:P到L1距离为:|Ax0+By0+C1|/√(A2+B2)=|-C2+C1|/√(A2+B2)=|C1-C2|.
空间平行线距离公式 两平行直线L1:(x-x1)/m=(y-y1)/n=(z-z1)/p,L2:(x-x2)/m=(y-y2)/n=(z-z2)/p,记 M1(x1,y1,z1),M2(x2,y2,z2),直线方向向量 s={m,n,p}则 记向量 M1M2={x2-x1,y2-y1,z2-z1}={a,b,c}故得平行线间的距离d=|M1M2×s|/|s|[(bp-cn)^2+(cm-ap)^2+(an-bm)^2]/√(m^2+n^2+p^2)
空间中两异面直线距离公式 一堆答非所问的直线L1的方向向量为s1,L2的方向向量为s2,点A在直线L1上,点B在直线L2上,d=|[s1 s2 AB]|/|s1 x s2|[s1 s2 AB]为混合积 s1 x s2为向量积
两直线,点到直线的距离公式 点到直线的距离公式d=|Ax0+By0+C|/根号(A^2+B^2)两平行直线距离公式d=|C1-C2|/根号(A^2+B^2).