如图,正四棱柱 A解析:取CC1中点F,连结D1F、AF,则∠AD1F是AD1与A1E所成角,易得,AFD1=90°.
(2012?汕头二模)如图,已知ABCD-A (1)证明:∵AA1⊥平面A1B1C1D1,B1D1?平面A1B1C1D1,∴AA1⊥B1D1,∵B1D1⊥A1C1,AA1∩A1C1=A1,∴B1D1⊥平面AA1C1,∵B1D1?平面AB1D1,∴平面AB1D1⊥平面AA1C1;(2)过点B1作B1H⊥AC1于H,连接D1H,则D1H⊥AC1.
(2014?江西一模)如图,在正四棱柱ABCD-A (1)证明:连结AC交BD于点O,连结C1O,PO∵正四棱柱ABCD-A1B1C1D1,∴C1C⊥平面ABCD且O为BD、AC中点,∴C1C⊥CD,C1C⊥BC又∵正四棱柱ABCD-A1B1C1D1,∴CD=CB,∴C1D=C1B,∴C1O⊥BD又C1O=(2)2+62=38,PO=OA2+PA2.