ZKX's LAB

极大值与极小值与导数有什么关系? 导数极小值和最小值的区别

2020-10-10知识14

导数中,最大最小值和极大极小值的区别, 对连续可导函数,极大极小值处导数为0;对连续闭区域函数,最大最小值就是端点值和所有极大极小值中的最大值,最小值 不一定。这要看你所求函数的单调性了,如果在所求区间。

极大值与极小值与导数有什么关系? 导数极小值和最小值的区别

极小值和最小值以及极大值和最小大值区别?? 极大/极小值是一个局部的性质,它要求在这一点的导函数为零且左右两边局部区间内的导函数符号相反。你可以笼统地理解为“极大/小值点在局部的小区间上光滑地隆起/凹陷”。而最大/小值讲的是一个区间整体的性质,是指整个这一区间中最大/小的值。如果最大/小值点存在的话,它将在极值点、不可导点(可以理解为不光滑的点)以及区间端点中产生。举个简单的例子,函数y=2*(x立方)+3*(x平方),这个函数在x=-1的时候取到极大值,但这点不是最大值点;在x=0的时候取到极小值,但这点也不是最小值点。在整个定义域(-∞,+∞),它没有最大值也没有最小值,但极值存在。但是,如果在区间[-1.1,0.1]上,这两个极值点就分别成为最大/小值点了。由此可见,极值是一个局部的性质,是不依赖于规定的区间的。而最值是一个区间内的整体的性质,所规定的区间不同,最值也会发生变化。虽然很失礼,但我不得不指出,1至4楼的回答是错误的。本人就事论事,请以上的朋友不要见怪…:)对于高中数学来说,这是远远超纲的,等您接触了高等数学就能更深入的了解了:)为了便于理解,以上的说明有的地方用的语言不是很严密,请谅解:)

极大值与极小值与导数有什么关系? 导数极小值和最小值的区别

导数中极小值和最小值,大值有什么区别

极大值与极小值与导数有什么关系? 导数极小值和最小值的区别

导数中极小值和最小值,大值有什么区别 极小值和极大值是导2113数=0的点所对的函5261数值;最小值,大值是在4102一定区间上函1653数值最大或最小的;极小值和极大值有可能是最小值,大值,但不一定.当最小值,大值不是极小值和极大值时,有可能是闭区间的界,也有可能该点导数不存在.

导数中,最大最小值和极大极小值的区别, 对连续可导函数,极大极小值处导数为0;对连续闭区域函数,最大最小值就是端点值和所有极大极小值中的最大值,最小值

最大值、最小值和极大值、极小值有什么区别? 1、代表意义不同最值,是函数的定义域内的最高点和最低点。函数最值分为函数最小值与函数最大值。简单来说,最小值即定义域中函数值的最小值,最大值即定义域中函数值的最大值。函数最大(小)值的几何意义:函数图像的最高(低)点的纵坐标即为该函数的最大(小)值。函数极值是一定范围内(给定区间)内取得的最大值或最小值,分别称为极大值或极小值,极值也称为相对极值或局部极值。2、包含关系不同极值可能是最值,但是最值不一定是极值。另外,开区间的极值点一定是最值点。例如:例如:y=x3-x(-5≤x≤5)。极大值在 x=-1 跟 x=0 之间,极小值在 x=0 跟 x=1 之间。而最小值在 x=-5 处,Y最小=-120;最大值在 x=5 处,Y最大=120。扩展资料求解函数的极值1、如果函数在闭合区间上是连续的,则通过极值定理存在整个定义域上的最大值和最小值。2、费马定理可以发现局部极值的微分函数,它表明它们必须发生在关键点。可以通过使用一阶导数测试,二阶导数测试或高阶导数测试来区分临界点是局部最大值还是局部最小值,给出足够的可区分性。3、对于分段定义的任何功能,通过分别找出每个零件的最大值(或最小值),然后查看哪一个是最大(或最小),找到最大值(或。

极大值与极小值与导数有什么关系 极大值和极小值统称极值点。极值点只能是不可导点百或导数为0的点。当然不可导点或导数为0的点,不一定是极度值点。通过导数求得定义域内的不可导点和导问数为0的点后。在根据该点左右附近的导数符号确定是否为极答值点。如果版该点左右附近导数符号相同,则不是极值点。如果该点左边导数为负,右边导数为正,则为极小值点。如果该点左边导数为正,右边导数为负,则为极大值权点。

最大值最小值和极大值极小值有啥区别和联系? 极大极小值分别是f(x)倒数为0的点,而最大最小值是极大极小值中分别最大,最小的那个 也就是说最大最小值一定是极大极小值,而反之不一定

#导数#一阶导数

qrcode
访问手机版