导数中,最大最小值和极大极小值的区别, 对连续可导函数,极大极小值处导数为0;对连续闭区域函数,最大最小值就是端点值和所有极大极小值中的最大值,最小值
极大值点﹑极小值点与极值的区别 1、属性不同极大值点,2113极小值点都各指的5261是一个点;极值4102是包括极大值与极小值的一组数据。2、所1653表示的意思不同极大值点与极小值点说的是横坐标的数值;而极值指的是纵坐标的数值。极值是一个函数的极大值或极小值。如果一个函数在一点的一个邻域内处处都有确定的值,而以该点处的值为最大(小),这函数在该点处的值就是一个极大(小)值。如果它比邻域内其他各点处的函数值都大(小),它就是一个严格极大(小)。该点就相应地称为一个极值点或严格极值点。扩展资料:极值的求解:寻求函数整个定义域上的最大值和最小值是数学优化的目标。如果函数在闭合区间上是连续的,则通过极值定理存在整个定义域上的最大值和最小值。此外,整个定义域上最大值(或最小值)必须是域内部的局部最大值(或最小值),或必须位于域的边界上。因此,寻找整个定义域上最大值(或最小值)的方法是查看内部的所有局部最大值(或最小值),并且还查看边界上的点的最大值(或最小值),并且取最大值或最小的)一个。费马定理可以发现局部极值的微分函数,它表明它们必须发生在关键点。可以通过使用一阶导数测试,二阶导数测试或高阶导数测试来区分临界点是局部最大值。
函数极大值、极小值和最大值、最小值的区别 最大最小值是在全局上考虑的,如果有最大值,只有一个,如果有最小值,也只有一个。br/>;极大极小值是在局部考虑的,如果f(x)在点a连续,如果左边递增,右边递减,则。
极大值极小值和最大值最小值有什么区别? 最大最小值是在全局上考虑的,如果有最大值,只有一个,如果有最小值,也只有一个.极大极小值是在局部考虑的,如果f(x)在点a连续,如果左边递增,右边递减,则称f(a)为极大值,反之称为极小值.因此一个函数可能有数个极大值,也可能有数个极小值.一个函数的最大值可能是极大值,也可能不是,同样,一个函数的最小值可能是极小值,也可能不是
极大值点﹑极小值点与极值的区别 1、属性不同极大值点,极小值点都各指的是一个点;极值是包括极大值与极小值的一组数据。2、所表示的意思不同极大值点与极小值点说的是横坐标的数值;而极值指的是纵坐标的数值。极值是一个函数的极大值或极小值。如果一个函数在一点的一个邻域内处处都有确定的值,而以该点处的值为最大(小),这函数在该点处的值就是一个极大(小)值。如果它比邻域内其他各点处的函数值都大(小),它就是一个严格极大(小)。该点就相应地称为一个极值点或严格极值点。扩展资料:极值的求解:寻求函数整个定义域上的最大值和最小值是数学优化的目标。如果函数在闭合区间上是连续的,则通过极值定理存在整个定义域上的最大值和最小值。此外,整个定义域上最大值(或最小值)必须是域内部的局部最大值(或最小值),或必须位于域的边界上。因此,寻找整个定义域上最大值(或最小值)的方法是查看内部的所有局部最大值(或最小值),并且还查看边界上的点的最大值(或最小值),并且取最大值或最小的)一个。费马定理可以发现局部极值的微分函数,它表明它们必须发生在关键点。可以通过使用一阶导数测试,二阶导数测试或高阶导数测试来区分临界点是局部最大值还是局部最小值,。
极小值和最小值以及极大值和最小大值区别?? 极大/极小值是一个局部的性质,它要求在这一点的导函数为零且左右两边局部区间内的导函数符号相反。你可以笼统地理解为“极大/小值点在局部的小区间上光滑地隆起/凹陷”。而最大/小值讲的是一个区间整体的性质,是指整个这一区间中最大/小的值。如果最大/小值点存在的话,它将在极值点、不可导点(可以理解为不光滑的点)以及区间端点中产生。举个简单的例子,函数y=2*(x立方)+3*(x平方),这个函数在x=-1的时候取到极大值,但这点不是最大值点;在x=0的时候取到极小值,但这点也不是最小值点。在整个定义域(-∞,+∞),它没有最大值也没有最小值,但极值存在。但是,如果在区间[-1.1,0.1]上,这两个极值点就分别成为最大/小值点了。由此可见,极值是一个局部的性质,是不依赖于规定的区间的。而最值是一个区间内的整体的性质,所规定的区间不同,最值也会发生变化。虽然很失礼,但我不得不指出,1至4楼的回答是错误的。本人就事论事,请以上的朋友不要见怪…:)对于高中数学来说,这是远远超纲的,等您接触了高等数学就能更深入的了解了:)为了便于理解,以上的说明有的地方用的语言不是很严密,请谅解:)
最大值、最小值和极大值、极小值有什么区别? 1、代表意义不同最值,是函数的定义域内的最高点和最低点。函数最值分为函数最小值与函数最大值。简单来说,最小值即定义域中函数值的最小值,最大值即定义域中函数值的最大值。函数最大(小)值的几何意义:函数图像的最高(低)点的纵坐标即为该函数的最大(小)值。函数极值是一定范围内(给定区间)内取得的最大值或最小值,分别称为极大值或极小值,极值也称为相对极值或局部极值。2、包含关系不同极值可能是最值,但是最值不一定是极值。另外,开区间的极值点一定是最值点。例如:例如:y=x3-x(-5≤x≤5)。极大值在 x=-1 跟 x=0 之间,极小值在 x=0 跟 x=1 之间。而最小值在 x=-5 处,Y最小=-120;最大值在 x=5 处,Y最大=120。扩展资料求解函数的极值1、如果函数在闭合区间上是连续的,则通过极值定理存在整个定义域上的最大值和最小值。2、费马定理可以发现局部极值的微分函数,它表明它们必须发生在关键点。可以通过使用一阶导数测试,二阶导数测试或高阶导数测试来区分临界点是局部最大值还是局部最小值,给出足够的可区分性。3、对于分段定义的任何功能,通过分别找出每个零件的最大值(或最小值),然后查看哪一个是最大(或最小),找到最大值(或。
最大值、最小值和极大值、极小值有什么区别? 最大最2113小值是在全局上考虑的,如果有最大值,只有一个,如果有最小值,也只有一个。极大5261极小值是在局部考虑的,如果f(x)在点a连续,如果左边递增,右边递减,则称4102f(a)为极大值,反之称为极小值。因此一个函数可能1653有数个极大值,也可能有数个极小值内。一个函容数的最大值可能是极大值,也可能不是,同样,一个函数的最小值可能是极小值,也可能不是。
极大值与极小值怎么区分 对于函数 先增后减产生极大值先减后增产生极小值对于导函数:先负后正产生极大值先正后负产生极小值一个给定的区间内,可以有多个极大值和极小值,其中最大的为最大值,最小的为最小值