导数中极小值和最小值,大值有什么区别 极小值和极大值是导2113数=0的点所对的函5261数值;最小值,大值是在4102一定区间上函1653数值最大或最小的;极小值和极大值有可能是最小值,大值,但不一定.当最小值,大值不是极小值和极大值时,有可能是闭区间的界,也有可能该点导数不存在.
极小值和最小值以及极大值和最小大值区别?? 极大/极小值是一个局部的性质,它要求在这一点的导函数为零且左右两边局部区间内的导函数符号相反。你可以笼统地理解为“极大/小值点在局部的小区间上光滑地隆起/凹陷”。而最大/小值讲的是一个区间整体的性质,是指整个这一区间中最大/小的值。如果最大/小值点存在的话,它将在极值点、不可导点(可以理解为不光滑的点)以及区间端点中产生。举个简单的例子,函数y=2*(x立方)+3*(x平方),这个函数在x=-1的时候取到极大值,但这点不是最大值点;在x=0的时候取到极小值,但这点也不是最小值点。在整个定义域(-∞,+∞),它没有最大值也没有最小值,但极值存在。但是,如果在区间[-1.1,0.1]上,这两个极值点就分别成为最大/小值点了。由此可见,极值是一个局部的性质,是不依赖于规定的区间的。而最值是一个区间内的整体的性质,所规定的区间不同,最值也会发生变化。虽然很失礼,但我不得不指出,1至4楼的回答是错误的。本人就事论事,请以上的朋友不要见怪…:)对于高中数学来说,这是远远超纲的,等您接触了高等数学就能更深入的了解了:)为了便于理解,以上的说明有的地方用的语言不是很严密,请谅解:)
极大值与极小值怎么区分 1、包含关系不同极值可能是最值,但是最值不一定是极值。另外,开区间的极值点一定是最值点。例如:例如:y=x3-x(-5≤x≤5)。极大值在 x=-1 跟 x=0 之间,极小值在 x=0 跟 x=1 之间。而最小值在 x=-5 处,Y最小=-120;最大值在 x=5 处,Y最大=120。2、属性不同极大值点,极小值点都各指的是一个点;极值是包括极大值与极小值的一组数据。3、所表示的意思不同极大值点与极小值点说的是横坐标的数值;而极值指的是纵坐标的数值。参考资料来源:-极值点参考资料来源:-极值
极大值与极小值与导数有什么关系 极大值和极小值统称极值点。极值点只能是不可导点百或导数为0的点。当然不可导点或导数为0的点,不一定是极度值点。通过导数求得定义域内的不可导点和导问数为0的点后。在根据该点左右附近的导数符号确定是否为极答值点。如果版该点左右附近导数符号相同,则不是极值点。如果该点左边导数为负,右边导数为正,则为极小值点。如果该点左边导数为正,右边导数为负,则为极大值权点。