怎么求一个矩阵的行阶梯形矩阵 在线性代数中2113,矩阵是行阶梯形矩阵(5261Row-Echelon Form),如果:所有非零行(4102矩阵的行至少有一个非零元素1653)在所有全零行的上面。即全零行都在矩阵的底部。非零行的首项系数(leading coefficient),也称作主元,即最左边的首个非零元素,严格地比上面行的首项系数更靠右。首项系数所在列,在该首项系数下面的元素都是零(前两条的推论).这个3×4矩阵是行阶梯形矩阵:化简后的行阶梯形矩阵(reduced row echelon form),也称作行规范形矩阵(row canonical form),如果满足额外的条件:每个首项系数是1,且是其所在列的唯一的非零元素。例如:注意,这并不意味着化简后的行阶梯形矩阵的左部总是单位阵.例如,如下的矩阵是化简后的行阶梯形矩阵:因为第3列并不包含任何行的首项系数.分享个:http://www.docin.com/p-53293868.html
将一个矩阵化为行阶梯型矩阵有什么技巧和方法啊? 1.先将第一行第一列,即主对角线上的第一个数变成1(通常都是用1开头)2.第二行加上或减去第一行的n倍使得第二行第一个元素变成0 3.之后让第三行先加上或减去第一行的a倍消去第三行第一个元素,再加上或减去第二行的b倍消去第三行第二个元素 4.之后以此类推,一直到第n行就把矩阵化为行阶梯矩阵
把一个矩阵化成阶梯型矩阵有什麽技巧么? 具体得看情况:一般做法是:1:只做行变换,理由是为了后面解方程可以直接写出等价方程。2:固定某一行,一般为第一行,而且要求第一行的第一个元素最好为1,如果这点要给出的行列式中不满足,可以通过换行和乘以适当的数来做到3:固定好了第一行后,用适当的数乘以第一行,加到其它行上去,将其它行的第一个元素全部化为0。4:这时,第一列已经完成了化简,对第二行施以第一行时同样的操作:即保持第二行不变,给第二行乘以适当的数加到其它行上去,让其它行的第二列全为0(注:如果只要化为阶梯型,那么第一行的第二个元素可以不用化为0,如果还要化为最简型,就将第一行的第二个元素也化为0)。5:第三行类比步骤4,直到完成所有的行变换。要是还有什么不懂可以直接来问我。