初等函数在其定义域内一定可导吗? 初等函数在定义域内一定连续,但不一定可导。举例如下:y=|x|就是y=sqrt(x^2),它是基本初等函数y=sqrt(u)和u=x^2的复合函数,是初等函数。(其中x^2表示x的平方,sqrt(x)表示x的算术平方根)但y=|x|在x=0点处的左导数为-1,右导数为1,因此该函数在x=0处不可导。另举反例:y=x^(1/3)(即x的立方根)是基本初等函数,但在x=0处不可导。
初等函数在其定义域内一定可导,对么? 初等函数在定义域内一定连续,但不一定可导。举例如下:y=|x|就是y=sqrt(x^2),它是基本初等函数y=sqrt(u)和u=x^2的复合函数,是初等函数.但y=|x|在x=0点处的左导数为-1,右导数为1,因此该函数在x=0处不可导。另举反例:y=x^.
初等函数在定义域内是否一定可导?顺便问一下,什么叫初等函数?
初等函数在定义域内一定可导? “初等函数在定义域内一定可导”这句话是错的,很容易举出例子,如你的f(x)=x^(1/3),是初等函数,但其在 x=0 不可导(实际上有无穷导数);而初等函数y=√(x^2)=|x|在 x=0 就真的不可导。顺便提一句,“基本初等函数在定义域内可导”,“初等函数在定义域内连续”是正确的。
基本初等函数在起定义域内都是可导的吗? 还有,初等函数在其定义域内都是可导的吗?(初等函数的定义:由基本初等函数经过有限次的四则运算和复合…
基本初等函数在定义域内都是可导的吗 是基本初等函数 不一定。例如,幂函2113数y=x^5261(1/2),定义域x≥0.导数y=1/2?x^4102(-1/2),只有当x>;0可导。又如,幂函数1653 y=x^(2/3),定义域R,但在x=0处不可导。由于函数的可导性要用到函数的极限知识,而现行课标、教材不学极限。所以中学不讲可导性。
初等函数在分别在其定义域和定义区间内一定可导吗 基本初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经过有限次四则运算及有限次复合后所构成的函数类。在其定义域内一定可导,一定连续
初等函数在其定义域内一定可导吗? 初等函数在定义域内一定连续,但不一定可导。举例如下:y=|x|就是y=sqrt(x^2),它是基本初等函数y=sqrt(u)和u=x^2的复合函数,是初等函数。(其中x^2表示x的平方,sqrt(x)表示x的。
基本初等函数在定义域内都是可导的吗是基本初等函数 基本初等2113函数在定义域内不一定都是可导5261的。初等函数在定义域4102内一定连续,1653但不一定可导!举例如下:y=|x|就是y=sqrt(x^2),它是基本初等函数。y=sqrt(u)和u=x^2的复合函数,是初等函数。(其中x^2表示x的平方,sqrt(x)表示x的算术平方根)。但y=|x|在x=0点处的左导数为-1,右导数为1,因此该函数在x=0处不可导。另举反例:y=x^(1/3)(即x的立。y=sqrt(u)和u=x^2的复合函数,是初等函数。(其中x^2表示x的平方,sqrt(x)表示x的算术平方根)。但y=|x|在x=0点处的左导数为-1,右导数为1,因此该函数在x=0处不可导。另举反例:y=x^(1/3)(即x的立初等函数在定义域内一定连续,但不一定可导!举例如下:y=|x|就是y=sqrt(x^2),它是基本初等函数。y=sqrt(u)和u=x^2的复合函数,是初等函数。(其中x^2表示x的平方,sqrt(x)表示x的算术平方根)。但y=|x|在x=0点处的左导数为-1,右导数为1,因此该函数在x=0处不可导。另举反例:y=x^(1/3)(即x的立。方根是基本初等函数,但在x=0处不可导。例如:幂函数y=x^(1/2),定义域x≥0。导数y=1/2?x^(-1/2),只有当x>;0可导。又如,幂函数y=x^(2/3),定义域R,但在x=0处不可导。。
初等函数在定义域内一定可导? “初等函数在定义域内一定可导”这句话是错的,很容易举出例子,如你的 f(x)=x^(1/3),是初等函数,但其在 x=0 不可导(实际上有无穷导数);而初等函数 y=√(x^2)=|x|在 x=0 就真的不可导.顺.