向量数量积坐标公式推导 数量积是吧:a=(ax,ay,az)=axi+ayj+azk,b=(bx,by,bz)=bxi+byj+bzka·b=(axi+ayj+azk)·(bxi+byj+bzk)=axi·(bxi+byj+bzk)+ayj·(bxi+byj+bzk)+azk·(bxi+byj+bzk)=axbxi·i+axbyi·j+axbzi·k+aybxj·i+aybyj·j+ayb.
向量求线面距离公式的推导
已知三角形三点坐标,求三角形面积的公式的证明 利用平面向量的数量积可证
数学,空间向量点到平面的距离公式是什么? 公式:推导过程:平面π的方程为:Ax+By+Cz+D=0,向量为平面的法向量,平面外一点坐标为在平面上取一点则点到平面π的距离为:其中α为向量与的夹角而由于点在平面π上,因此有即由此可得所以此公式即为点到平面的距离公式。扩展资料空间向量基本定理1、共线向量定理两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb2、共面向量定理如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by3、空间向量分解定理如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。在一个向量空间V中,定义为V*V 的正定对称双线性形式函数即是V的数量积,而添加有一个数量积的向量空间即是内积空间。点积适用于交换律、结合律、分配律。点积有两种定义方式:代数方式和几何方式。通过在欧氏空间中引入笛卡尔坐标系,向量之间的点积既可以由向量坐标的代数运算得出,也可以通过引入两个向量的长度和角度等几何概念来求解。参考资料来源:-点到平面距离