ZKX's LAB

对数字图像处理的认识 图像处理,图像分析和图像理解各有什么特点

2020-07-19知识31

浅谈对遥感数字图像处理的理解、认识、想法、看法 理解:数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用 数字图像处理计算机对其进行处理的过程。数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。在以后的 数字图像处理技术宇航空间技术,如对火星、。数字图像处理中,对图像进行空间域处理,表达式g(x,y)=T[f(x,y)],这个表达式怎么理解,怎么对图像进行 设原图像中某个像素的坐标值是(x,y),f(x,y)表示该像素的某种表征的值.比如设原图为一个灰度图,而f(x,y)可表示为(x,y)处的灰度值.假设该点灰度值为220,则f(x,y)=220T表示对f(x,y)进行一个操作,比如T(f(x,y))=f(x,y).关于数字图像处理 求前辈支招 工程硕士的话,时间是紧些。数字图像处理的话,其实要上手也是比较快的,因为图像的基本操作也就是平滑增强等那些.对着冈萨雷斯那本书看的话其实也是很快的matlab程序如果不懂的话可以参考下matlab教程什么的,本身它的语言还是很直观形象的。这其实是基础,如果你入学后定了方向,比如说做车牌识别什么的,有了方向,参考下其他类似方向的论文多总结下.很快就上手了。“Phase”在数字图像处理里面是什么意思 图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。图像处理一般指数字图像处理。数字图像是指用工业相机、摄像机、扫描仪等设备经过拍摄得到的一个大的二维数组,该数组的元素称为像素,其值称为灰度值。图像处理技术的一般包括图像压缩,增强和复原,匹配、描述和识别3个部分。常见的系统有康耐视系统、图智能系统等,目前是正在逐渐兴起的技术。21世纪是一个充满信息的时代,图像作为人类感知世界的视觉基础,是人类获取信息、表达信息和传递信息的重要手段。数字图像处理[9],即用计算机对图像进行处理,其发展历史并不长。数字图像处理技术源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约传输了一幅照片,采用了数字压缩技术。首先数字图像处理技术可以帮助人们更客观、准确地认识世界,人的视觉系统可以帮助人类从外界获取3/4以上的信息,而图像、图形又是所有视觉信息的载体,尽管人眼的鉴别力很高,可以识别上千种颜色,但很多情况下,图像对于人眼来说是模糊的甚至是不可见的,通过图象增强技术,可以使模糊甚至不可见的图像变得清晰明亮。在计算机中,按照颜色和灰度的多少可以将图像分为二值图像、灰度。数字图像处理中常用图像分割算法有哪些? 列举一些常用的算法以及优缺点,谢谢~ 5 测试计量技术及仪器博士 34 人赞同了该回答 多数的图像分割算法均是基于灰度值的不连续和相似的性质。。数字图像处理中常用图像分割算法有哪些? 列举一些常用的算法以及优缺点,谢谢~ 多数的图像分割算法均是基于灰度值的不连续和相似的性质。在前者中,算法以灰度突变为基础分割一幅图像,如图像边缘分割。。数字图像处理的意义 图像处理主要和模式识别及图像理解系统的研究相联系,如文字识别、医学图像处理、遥感图像的处理等。(1)数字图像处理的信息大多是二维信息,处理信息量很大。如一幅256×256低分辨率黑白图像,要求约64kbit的数据量;对高分辨率彩色512×512图像,则要求768kbit数据量;如果要处理30帧/秒的电视图像序列,则每秒要求500kbit~22.5Mbit数据量。因此对计算机的计算速度、存储容量等要求较高。(2)数字图像处理占用的频带较宽。与语言信息相比,占用的频带要大几个数量级。如电视图像的带宽约5.6MHz,而语音带宽仅为4kHz左右。所以在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本亦高,7a64e4b893e5b19e31333335333662这就对频带压缩技术提出了更高的要求。(3)数字图像中各个像素是不独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。就电视画面而言,同一行中相邻两个像素或相邻两行间的像素,其相关系数可达0.9以上,而相邻两帧之间的相关性比帧内相关性一般说还要大些。因此,图像处理中信息压缩的潜力很大。(4)由于图像是三维景物的二维投影,一幅图象本身不具备复现三维景物的全部几何信息的能力,很显然三维。数字图像处理中像素值乱是指什么?像素置乱和位置之乱有什么区别? 要利用计算机对数字化图像进行处理,首先要对图像的文件格式要有清楚的认识,因为我们前面说过,自然界的图像以模拟信号的形式存在,在用计算机进行处理以前,首先要数字化,比如摄像头(CCD)摄取的信号在送往计算机处理前,一般情况下要经过数模转换,这个任务常常由图像采集卡完成,它的输出一般为裸图的形式;如果用户想要生成目标图像文件,必须根据文件的格式做相应的处理。随着科技的发展,数码像机、数码摄像机已经进入寻常百姓家,我们可以利用这些设备作为图像处理系统的输入设备来为后续的图像处理提供信息源。无论是什么设备,它总是提供按一定的图像文件格式来提供信息,比较常用的有BMP格式、JPEG格式、GIF格式等等,所以我们在进行图像处理以前,首先要对图像的格式要有清晰的认识,只有在此基础上才可以进行进一步的开发处理。在讲述图像文件格式前,先对图像作一个简单的分类。除了最简单的图像外,所有的图像都有颜色,而单色图像则是带有颜色的图像中比较简单的格式,它一般由黑色区域和白色区域组成,可以用一个比特表示一个像素,“1”表示黑色,“0”表示白色,当然也可以倒过来表示,这种图像称之为二值图像。我们也可以用8 个比特(一个字节)表示。新手初入人工智能(图像处理方向),我该向什么方向发展? 计算机视觉方向目前主要有几大方向比较热门,我下面将分别从他们的发展过程与现状以及怎么入门学习来进行介绍。首先,计算机视觉的主要方向有:图像分类人脸识别目标检测图像分割关键点检测文字识别OCR编程与数学基础首先,人工智能毕竟是一个计算机学科,需要具备基本的编程功底与数学能力。具体来说,编程方面,需要熟悉Python编程,熟悉Numpy,Pandas,Opencv等库的使用,同时还得熟悉某个深度学习框架的使用,比如TensorFlow,Keras,PyTorch,Caffe等。以上这些是必须具备的,如果能再有点C++,Java方面的基础就更好了。数学方面,肯定需要对大学的数学知识有一定的了解,比如求导与积分,偏导数,梯度下降之类的高数知识,以及线代和概率与统计等知识。如果对这方面知识不太熟悉,建议从课本上好好学学,当然也可以通过如下图所示的深度学习圣经即\"花书\"的前几章来学习。图像分类图像分类是一个计算机视觉的经典方向。深度学习的火爆最早是因为Hinton带领他的学生使用深度神经网络参加了ImageNet大赛,其最后成绩远超使用传统方法的第二名一大截。由此引发了最近几年越来越热门的深度学习研究,在2012年及以后,在ImageNet比赛上出现了更多的网络结构,从最开始的。

#计算机的发展#图像像素#人工智能技术#图像处理

随机阅读

qrcode
访问手机版