极值存在的充分条件 几何意义 你对一阶导数的理解完全正确,二阶导数跟凹凸性有关,也是对的.一阶导为0,且两阶导大于0,比如:y=x^2,在x=0处.怎么理解呢?锅啊.从上往下看,整个都是凹的,最底下那个点就是极小值点.一阶导为0,且两阶导小于0,比如:y=-x^2,在x=0处.倒扣的锅啊,凸的,最上面的点为极大值点.好学善思的精神值得称道,祝进步。
为什么判断极值的时候,二阶导数大于0是极小值点,前提一定要一阶导数为0? 极值点处一阶导数一定为0,但一阶导数为0的点不一定是极值点二阶导数大于0,说明曲线为凹,故为极小值
为何有极小值微分就是0? 有极小值 说明连续 连续说明 两个无线接近的点 纵坐标相等 即可微