你说的倒三角2113叫nabla,是哈密5261尔顿引入的一个4102算符,和四元1653数有关,讲出来会让你内更糊涂。总之,如你容理解是个简写的符号。拉普拉斯算子作用在某个函数f(x,y,z)上(拿三维举个例子),就是将这个函数对每个变量求二阶偏导数,然后求和,仅此而已。有时Δf=0用直角坐标不好解,就换成圆柱坐标或球坐标来解,那几个公式就是坐标变换后的拉普拉斯算子。还有应该没有一维问题,至少是二维才有拉普拉斯算子。对其所有变量求二阶偏导再求和,当然是对直角坐标而言。
拉普拉斯算子的高维球极坐标系表示是什么? 拉普拉斯算子的高维球极坐标系表示是其中是N? 1维球面上的拉普拉斯-贝尔特拉米算子。拉普拉斯算子是抄n维欧几里德空间中的一个二阶微分算子,定义为梯度(▽百f)的散度(▽·f)。因此如果f是二阶可微的实函数,则f的拉普拉斯算子定义为:f的拉普拉斯算子也是笛卡儿坐标系度xi中的所有非混合二阶偏导数:作为一个二阶微分算子,拉普拉斯算子把C函数映射到C函数,对于k≥2。表达式问(1)(或(2))定义了一个算子Δ:C(R)→C(R),或更一般地,定义了一个算子Δ:C(Ω)→C(Ω),对于任何开集Ω。函数的拉普拉斯算子也是该函数的黑塞矩阵的迹另外答,满足▽·▽f=0 的函数f,称为调和函数。
几条和哈密顿算子有关的公式推导。不懂。求证明 图上有答案