怎么计算自协方差函数 2113自协方差在统计学中,特定5261时间序列或者连续信号4102Xt的自协方差是信号与其经过时间平移1653的信号之间的协方差。如果序列的每个状态都有一个平均数E[Xt]=μt,那么自协方差为其中 E 是期望值运算符。如果Xt是二阶平稳过程,那么有更加常见的定义:其中k是信号移动的量值,通常称为延时。如果用方差σ^2 进行归一化处理,那么自协方差就变成了自相关系数R(k),即有些学科中自协方差术语等同于自相关。(自协方差的概念)自协方差函数是描述随机信号X(t)在任意两个不同时刻t1,t2,的取值之间的二阶混合中心矩,用来描述X(t)在两个时刻取值的起伏变化(相对与均值)的相关程度,也称为中心化的自相关函数。
怎么计算自协方差函数:自协方差在统计学中,特定时间序列或者连续信号Xt的自协方差是信号与其经过时间平移的信号之间的协方差。如果序列的每个状态都有一个平均数E[X?
什么是广义平稳过程 信号处理中常用的弱平稳也被称为62616964757a686964616fe4b893e5b19e31333361313863广义平稳(Wide-sense stationary,W SS)、二阶平稳或者协方差平稳。WSS 随机过程仅仅要求一阶和二阶矩不随时间变化。一个 WSS 的连续时间随机过程 x(t)有下述数学期望函数1.与相关函数2.第一个属性表明数学期望函数 mx(t)必须是常数。第二个属性表明相关函数仅仅与 t1 和 t2 之间的差值相关,并且可以仅仅用一个变量而不是两个变量来表示。这样,通常可以简化为其中:。当使用线性、时不变(线性时不变系统)滤波器处理广义平稳随机信号的时候,将相关函数作为线性算子是很有帮助的。由于它是轮换矩阵运算,只与两个变量之间的差值有关,所以它的特征函数是傅里叶级数复数指数函数。另外,由于线性时不变系统算子也是复指数函数,广义平稳随机信号的线性非时变处理非常易于操作-所有的运算都可以在频域进行。因此,广义平稳假设在信号处理算法中得到了广泛应用。一种弱的多的平稳性在分析随机输入的线性系统时非常有用。这种平稳性甚至比二阶平稳性还要弱,通常称为弱平稳性或广义平稳性。如果一个随机过程满足下列条件:(1)随机过程的期望值E[x(t)]为一常数,因此与时间变量无关,。