统计学上为什么P值大于0.05我们可认为该组数据是符合正态分布? 简单讲一般可以这样理解:统计学里在差异性的比较中,大于0.05表示无差异,小于0.05表示有差异。大于0.05表明与正态分布无差异,故符合正态分布。P值不代表显著不显著,。
正态K-S假设检验里面的P值为什么要大于0.05? 越搞越糊涂了,为什么在正态检验里面P值要大于0.05,统计学里面P值不是越大就越拒绝H0假设么,那就是说P…
用SPSS做对数正态分布检验,sig值>0.05或<0.05说明什么问题? (sig值由分析-非参-K-S检验得出的) 当sig大于0.05时就说明数据服从指定的分布(如正态分布),sig越大越能说明数据服从指定的分布(如正态分布)。sig值小于0.05说明数据不服从正态分布。从研究总体中抽取一个随机样本计算检验统计量的值计算概率sig值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。如果sig,说明是较强的判定结果,拒绝假定的参数取值。如果0.01值,说明较弱的判定结果,拒绝假定的参数取值。如果sig值>;0.05,说明结果更倾向于接受假定的参数取值。扩展资料在很多应用中,特别是在可靠性和维修性方面,数据可能不符合正态分布。可是,随机变量的对数可能符合正态分布,对此情况称为对数正态分布。如果应用对数正态分布,在对数正态图纸上数据的图形将是一条直线。绘图的过程与其他分布是相同的。其分析的过程包括计算对数值的平均值和标准差,以及对最终结果取反对数。对数正态分布与正态分布很类似,除了它的概率分布向右进行了移动。对数正态分布从短期来看,与正态分布非常接近。但长期来看,对数正态分布向上分布的数值更多一些。更准确地说,对数正态分布中,有更大向上波动的可能,更小向下波动的可能。对数正态分布用于半导体器件的。