平均数,中位数,众数分别有什么特点 1、平均数与每一2113个数据都有关,其中任何数5261据的变动4102都会相1653应引起平均数的变动。主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。2、中位数与数据的排列位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响。3、众数与数据出现的次数有关,着眼于对各数据出现的频率的考察,其大小只与这组数据中的部分数据有关,不受极端值的影响,其缺点是具有不惟一性,一组数据中可能会有一个众数,也可能会有多个或没有。扩展资料1、平均数、中位数和众数的联系与区别:平均数应用比较广泛,它作为一组数据的代表,比较稳定、可靠。但平均数与一组数据中的所有数据都有关系,容易受极端数据的影响;简单的说就是表示这组数据的平均数。中位数在一组数据中的数值排序中处于中间的位置,人们由中位数可以对事物的大体进行判断和掌控,它虽然不受极端数据的影响,但可靠性比较差;所以中位数只是表示这组数据的一般情况。众数着眼对一组数据出现的频数的考察,它作为一组数据的代表,它不受极端数据的影响,其大小与一组数据中的部分数据。
简述算术平均数、中位数、众数三者之间的关系 算术平均数、中位数、众数三者之间的关系:1、众数、中位数和平均数是集中趋势的三个主要测度值,只是它们具有不同的特点和应用场合。2、对于具有单峰分布的大多数数据而言,众数、中位数和平均数之间具有以下数量关系:1)如果数据的分布时对称的,中位数、算术平均数、众数三者完全相等。2)如果数据是左偏分布,说明数据存在极小值,必然拉动平均数向极小值一方偏移,而众数和中位数由于是位置代表值,不受极值的影响,因此三者之间的关系表现为:平均数<;中位数<;众数。3)如果数据是右偏分布,说明数据存在极大值,必然拉动平均数向极大值一方偏移,则众数<;中位数<;平均数。算术平均数(arithmetic mean):又称均值,是统计学中最基本、最常用的一种平均指标,分为简单算术平均数、加权算术平均数。它主要适用于数值型数据,不适用于品质数据。根据表现形式的不同,算术平均数有不同的计算形式和计算公式。算术平均数是加权平均数的一种特殊形式(特殊在各项的权重相等)。在实际问题中,当各项权重不相等时,计算平均数时就要采用加权平均数;当各项权相等时,计算平均数就要采用算术平均数。众数(Mode):是统计学名词,在统计分布上具有明显集中趋势点的。
为什么学业水平 有可能系统错误,需要重新填写