ZKX's LAB

函数有极限曲线必光滑 如何证明函数是连续不断的曲线?请作详细回答,表达清晰点谢谢!

2021-04-26知识12

连续/可导/极限之间有什么关系呢? 关于函数的导数和连续有比较经典的四句话:1、连续的函数不一定可导。2、可导的函数是连续的函数。3、越是高阶可导函数曲线越是光滑。4、存在处处连续但处处不可导的函数。。

高数,光滑曲线弧是可求长的,怎么证明 证明:分析,光滑曲线可求长等价于连续函数必可积令:y=f(x)在[a,b](b>;a)上连续,将闭区间[a,b]分割成n个微小区间,即:x0=a≤x1≤x2≤.≤xn=b,考查每个区间[x(i-1),x(i)]上f(x)的取值f(x)在[x(i-1),x(i)]连续根据最值定理必然存在:m(i),M(i),使得:m(i)≤f(x)≤M(i),x∈[x(i-1),x(i)]再令:Δx(i)=x(i)-x(i-1),于是:m(i)·Δx(i)≤f(x)Δx(i)≤M(i)·Δx(i),根据介值定理,至少?ξ(i)∈[x(i-1),x(i)],使得在微小区间段中:m(i)·Δx(i)≤f(ξ(i))Δx(i)≤M(i)·Δx(i)再令:M(min)=Σ(i:1→n)m(i)·Δx(i),M(max)=Σ(i:1→n)M(i)·Δx(i)显然:M(max)-M(min)≥0另一个方面:M(max)-M(min)Σ(i:1→n)[M(i)-m(i)]·Δx(i)根据康托定理,连续函数y=f(x)在[a,b]上必然是一致连续的,因此,根据介值定理,下述成立:?ε>;0,且令:ε=max{M(i)-m(i)},则:?ζ>;0,使得:|x(i)-x(i-1)|<;ζ时,M(i)-m(i)<;ε因此:Δx=max{Δx(i)}lim(Δx→0)[M(max)-M(min)]=0即:当Δx→0时,M(max)和M(min)有相同的收敛值又∵M(min)≤Σ(i:1→n)f[ξ(i)]Δx(i)≤M(max)上式取Δx→0,即n→的极限,则:lim(n→)M(min)≤lim(n→)Σ(i:1→n)f[ξ(i)]。

连续,光滑的函数,一定可导吗 不一定。连续光滑的曲线,必然处处有切线,这点是必然的,没有切线的地方,就不光滑。但是有切线和可导,是两个概念。如果切线垂直于x轴,那么切线无斜率,导数不存在。。

#函数有极限曲线必光滑

随机阅读

qrcode
访问手机版