最优化问题中,牛顿法为什么比梯度下降法求解需要的迭代次数更少? 经常看到资料上这么写,谁能给出详细点的解释,比如在几何方面上的解释
非线性优化中的 KKT 条件该如何理解? 普通本科数学教材中都会介绍Lagrange乘子法,用于求解带等式约束的极值问题,KKT条件是拉格朗日乘子法的…
求解非线性规划问题? 最低0.27元/天开通文库会员,可在文库查看完整内容>;原发布者:jiwenjuan996非线性规划问题的求解方法Content无约束非线性规划问题有约束非线性规划问题Matlab求解有约束非线性规划问题一.无约束问题?一维搜索指寻求一元函数在某区间上的最优值点的方法。这类方法不仅有实用价值,而且大量多维最优化方法都依赖于一系列的一维最优化。逐次插值逼近法近似黄金分割法(又称0.618法)?无约束最优化指寻求n元实函数f在整个n维向量空间Rn上的最优值点的方法。无约束最优化方法大多是逐次一维搜索的迭代算法。这些迭代算法的基本思想是:在一个近似点处选定一个有利搜索方向,沿这个方向进行一维寻查,得出新的近似点。然后对新点施行同样手续,如此反复迭代,直到满足预定的精度要求为止。根据搜索方向的取法不同,可以有各种算法。最速下降法(负梯度法)Newton法共轭梯度法拟Newton法变尺度法二.有约束问题(一)罚函数法(SUMT)1、算法思想:将有约束优化问题转化为一系列无约束优化问题进行求解.(SequentialUnconstrainedMinimizationTechnique-SUMT)2、算法类型:外点法(外惩法)内点法(内惩法)3、问题:4.1、外点法(外部惩罚函数法):外点法框图:kk1初始x(0),10,10。