如何证明协方差为零的两个随机变量并不独立 如果两个变量的bai协方差du为正,那么两个变量的变zhi化趋势一致,即一个变量如果dao变大,版那么这个变量也会变大权。如果协方差为负,那么两个变量的变化趋势想反。如果为0,说明两个变量不相关。协方差虽然在一定程度上能够反映了X和Y相关间的联系,但它还是受X与Y量纲的影响。所以再计算X与Y的协方差之前,先对X与Y进行标准化变换。扩展资料:注意事项:比如有100个样本,每个样本10个属性,那么计算得到的协方差矩阵一定是10*10的,而不是100*100的,这个一定要注意。协方差矩阵主要是为了分析属性与属性之间的相关性,而非样本与样本之间的相关性。利用协方差矩阵可以测量性别与剩下三个属性的相关程度,计算值为负值,比如胡子和岁数的协方差值计算为负,那么说明呈负相关,胡子越少,越年轻。如果为正值,比如皱纹和岁数的协方差矩阵为正值,那么呈正相关,即皱纹越多越年轻。参考资料来源:-协方差参考资料来源:-随机变量
为什么随机变量X和Y不相关却不一定独立? 首先,我们假定要研究的两个随机变量是X和Y。他们的联合密度函数是f(x,y),X的边缘密度g(x),Y的边缘密度…
请问两个随机变量XY不独立,他们的协方差cov(X,Y)已知,请问怎么计算两者乘积的期望E(XY)? 利用协方差的公式啊COV(X,Y)=E[(X-E(X))(Y-E(Y))]=EXY-EX*EY那么EXY=COV(X,Y)+EX*EYEX,EY,COV(X,Y)都已知,就可以算出来了。如果X与Y是统计独立的,那么二者之间的。