ZKX's LAB

SAR雷达的介绍 雷达反SAR侦察

2021-04-26知识11

合成孔径雷达原理(SAR) 最低0.27元开通文库会员,查看完整内容>;原发布者:风月书生合成孔2113径雷达原理§1合成孔径5261雷达原理机载合成孔径雷达的几何关4102系如图所示:xθαR0θrLsWθrhWxθαLminRpR0Lmax飞机1653以速度va沿x方向匀速直线飞行,飞行高度为h,机载雷达的天线以规定的俯角向航线正侧方向地面发射无线电波。垂直波束角为θr,航向波束角为θα,测绘带宽为W,最大合成孔径长度为:Lmax,最小合成孔径长度为:Lmin。被测目标为一理想点目标p,p点与航线x的垂直斜距为R0。取航线x和R0所构成的平面为坐标平面。设飞机在t=0时处在坐标原点,某一时刻t,飞机的位置xa=vat。点目标p的位置在这个坐标系里是固定的,(xp,R0)。在t时刻,p与飞机上雷达天线的斜距R为:RR02(xaxp)2一般情况下,R0?xaxp则R可近似为:RR02(xaxp)2BR0(xaxp)22R0天线发出的是周期性的相干等幅高频脉冲波,设其频率为f0,振幅为A,脉冲重复频率为fr,脉宽为τ。①假设发射的为一连续波余弦信号,把实际信号看成是对连续信号的抽样,其抽样率即为脉冲重复频率fr;②假定余弦信号的振幅归一化为1,起始相位为0,则有:s0(t)Reej0t,02f0发射信号回波信号:sr(t)ReK0ej(t-0)K表示由距离R及其他因素引起的对信号幅度。

SAR雷达的发展 在雷达卫星1号基础上,加2113拿大在52612001年发射的雷达卫星2号雷达将具有全极化测量能4102力;欧空局也将在1999年165311月发射的Envisat-1卫星上装载ASAR,有同极化和交叉极化两种极化模式;2002年将发射的LightSAR 将为L波段多极化及具有干涉测量、扫描模式的实用化成像雷达。同年计划发射的日本ALOS/PALSAR亦为多极化、多工作模式雷达系统。我国也将在未来的几年内,发射自行研制的L波段雷达卫星。由此可见,国际上星载雷达正在向新的方向发展,它们将为数字地球的发展提供丰富的数据源。SAR技术的空间应用,使其成为20世纪末最受欢迎的侦察仪器之一,对它的应用和发展还刚刚开始。SAR卫星在未来将有更加广阔的发展和应用前景。ALOS是日本的对地观测卫星,日本地球观测卫星计划主要包括2个系列:大气和海洋观测系列以及陆地观测系列。先进对地观测卫星ALOS是JERS-1与ADEOS的后继星,采用了先进的陆地观测技术,能够获取全球高分辨率陆地观测数据,主要应用目标为测绘、区域环境观测、灾害监测、资源调查等领域。ALOS卫星载有三个传感器:全色遥感立体测绘仪(PRISM),主要用于数字高程测绘;先进可见光与近红外辐射计-2(AVNIR-2),用于精确陆地观测;相控。

什么是光学图像?什么是SAR图像?它们的区别是什么?成像机制有什么差异?在图像分割上有什么不同? 1、是什么:光学图像是采用光学摄影系统获取的以感光胶片为介质的图像,通常指可见光和部分红外波段传感器获取的影像数据。SAR图像由SAR(合成孔径雷达)系统产生,这是一种主动式的对地观测系统,可安装在飞机、卫星、宇宙飞船等飞行平台上,全天时、全天候对地实施观测、并具有一定的地表穿透能力。2、区别(信息,分辨率,成像机制):包含信息方面:光学图像通常会包含多个波段的灰度信息,以便于识别目标和分类提取。而SAR图像则只记录了一个波段的回波信息,以二进制复数形式记录下来;但基于每个像素的复数数据可变换提取相应的振幅和相位信息。分辨率方面:SAR影像分辨率相对较低、信噪比较低,所以SAR影像中所包含的振幅信息远达不到同光学影像的成像水平;但其特有的相位信息是其他传感器所无法获取的,基于相位的干涉建模也是SAR的主要应用方向。成像机制差别:光学影像通常采用中心投影面域成像或推帚式扫描获取数据;而SAR处于信号处理的需要(合成孔径过程,这里就不展开讨论了)不能采用垂直向下的照射方式而只能通过测视主动成像方式发射和接受面域雷达波,并通过信号处理(聚焦、压缩、滤波等)手段后期合成对应于地面目标的复数像元。3、在图像。

#雷达反SAR侦察

随机阅读

qrcode
访问手机版