ZKX's LAB

系统动力学中初值 混沌动力学的含义是什么?

2021-04-25知识19

「动力系统」与「微分方程」的关系是什么? 如题,如何从字面上理解「动力系统」?它与微分方程的关系是什么?

在物理学中,混沌理论(非线性动力学)和量子力学理论之间有何区别与联系? 谢谢邀请。我猜题主可能是在想Chaos的被谬传的“不可预测性”和量子测量的随机性之间的联系?在此我需要…

线性动力学和非线性动力学的区别 线性系统:状态变量和输出变量对于所有可能的输入变量和初始状态都满足叠加原理的系统。一个由线性元部件所组成的系统必是线性系统。但是,相反的命题在某些情况下可能不成立。线性系统的状态变量(或输出变量)与输入变量间的因果关系可用一组线性微分方程或差分方程来描述,这种方程称为系统的数学模型。非线性系统:一个系统,如果其输出不与其输入成正比,则它是非线性的。从数学上看,非线性系统的特征是叠加原理不再成立。叠加原理是指描述系统的方程的两个解之和仍为其解。叠加原理可以通过两种方式失效。其一,方程本身是非线性的。其二,方程本身虽然是线性的,但边界是未知的或运动的。线性,指量与量之间按比例、成直线的关系,在空间和时间上代表规则和光滑的运动;而非线性则指不按比例、不成直线的关系,代表不规则的运动和突变。如问:两个眼睛的视敏度是一个眼睛的几倍?很容易想到的是两倍,可实际是 6-10倍!这就是非线性:1+1不等于2。线性关系是互不相干的独立关系,而非线性则是相互作用,而正是这种相互作用,使得整体不再是简单地等于部分之和,而可能出现不同于\"线性叠加\"的增益或亏损。线性关系中的量是成比例的:十枚橘子的价钱是一枚的十。

#系统动力学中初值

随机阅读

qrcode
访问手机版