ZKX's LAB

正三棱柱的外接球和内切球 正三棱柱的内切球与外接球的球半径关系

2021-04-25知识7

若一个正三棱柱存在外接球与内切球,则它的外接球与内切球表面积之比为______. 设正三棱柱底面正三角形的边长为a,当球外切于正三棱柱时,球的半径R1等于正三棱柱的底面正三角形的边心距 36a,R12=112a2,故正三棱柱的高为 233a,当正三棱柱外接球时,球的圆心是正三棱柱高的中点,且球的球心与正三棱柱两个底面正三角形构成两个正三棱锥,R22=(33a)2+(33a)2=23a2,内切球与外接球表面积之比为112a2:23a2=1:8.故答案为:8:1

一道球表面积选择题 答案为D正三棱柱不一定有内切球:若正三棱柱有内切球,则正三棱柱的高一定是球的直径,此时正三棱柱的棱长为底面边长的(根号3)/3倍;正三棱柱一定有外接球:但直径一定不是正三棱柱的高,直径为根号(h^2+4a^2/3),其中h为三棱柱的高,a为底面边长.

正三棱柱的内切球和外接球的体积之比 求详细解释 最好画图 在线等 正三棱柱有内切球的话2113则正三棱柱的高一定是球的直径5261,此时正4102三棱柱的侧棱长为底面边长的(根号3)/3倍;再看外1653接球令上下的等边三角形边长为a,侧棱长为h 由等边三角形的性质,容易证明三角形几何中心到三角形三顶点的距离:S=(√3)/3 现在想象用一把刀从三棱柱的中间水平切割过去,把三棱柱切成了两个相同的三棱柱 那么新出现的平面的中心到原三棱柱的距离均为√[(h^2)+4*(a^2)/3]{勾股定理} 那么这个点就是外接球心 这个共同距离就是半径由于内切球 h=(根号3)/3a 外接球的半径为根号15/3a面积比(根号15/3)^2:(根号3/3)^2=5:1

#正三棱柱的外接球和内切球

随机阅读

qrcode
访问手机版