累计方差贡献率和方差贡献率是什么关系SPSS中~~ 各方差贡献率相加和等于累计方差贡献率。主成分分析的重点在于解释各变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。主成分分析中不需要有假设,因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子之间也不相关,共同因子和特殊因子之间也不相关。主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。扩展资料:利用因子分析法分析累计方差贡献率和方差贡献率:在因子分析中,因子个数需要分析者指定,spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析,而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。和主成分分析相比,e799bee5baa6e79fa5e98193e4b893e5b19e31333431356637由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量新的变量,几乎带有原来所有变量的信息,来。
只提取出一个主成分说明什么?这个主成分贡献率只有64%,这样还能进行主成分分析吗?那么什么情况下才能提取出一个主成分呢?这是不是也与变量个数有关,是不是变量个数太少?(我现在用的纵坐标只有3个变量)
spss中如何用因子分析计算各指标的权重? 确定2113数据的权重也是进行数据5261分析的重要前提。可以利用SPSS的因子4102分析方法来确定权1653重。主要步骤是:(1)首先将数据标准化,这是考虑到不同数据间的量纲不一致,因而必须要无量纲化。(2)对标准化后的数据进行因子分析(主成分方法),使用方差最大化旋转。(3)写出主因子得分和每个主因子的方程贡献率。Fj=β1j*X1+β2j*X2+β3j*X3+…+βnj*Xn;Fj 为主成分(j=1、2、…、m),X1、X2、X3、…、Xn 为各个指标,β1j、β2j、β3j、…、βnj为各指标在主成分Fj 中的系数得分,用ej表示Fj的方程贡献率。(4)求出指标权重。ωi=[(m∑j)βij*ej]/[(n∑i)(m∑j)βij*ej],ωi就是指标Xi的权重。扩展资料因子分析的基本思想是根据相关性大小把原始变量分组,使得同组内的变量之间相关性较高,而不同组的变量间的相关性则较低。每组变量代表一个基本结构,并用一个不可观测的综合变量表示,这个基本结构就成为公共因子,对于所研究的某一具体问题,原始变量就可以分解成两部分之和的形式,一部分是少数几个不可测的所谓公共因子的线性函数,另一部分是与公共因子无关的特殊因子。参考资料来源:-spss