棱柱的特征三角形 所谓特征三角形,就是含有这个图形一些基本量的三角形:1.正棱柱一般是没有所谓的特征三角形的,如果一定要算的话,那么底面正多边形可以分解成n个等腰三角形也可以算是吧。2.正棱锥的特征三角形:①顶点,底面中心,底面正多边形顶点;②顶点,底面中心,底面正多边形一边的中点;③顶点,底面正多边形顶点,底面正多边形一边的中点;④底面中心,底面正多边形一边的中点,底面正多边形顶点;3.正棱台的特征三角形:其实正棱台只有特征梯形,因为正棱台可以看作正棱锥来平行于底面的平面截得的,故上面正棱锥中的那些特征三角形,如果被截成梯形的话,就可以算作特征梯形,这些梯形里含有这个棱台的一些主要信息,当然在具体计算的时候,因为梯形还是要转化为三角形来算的,所以归根到底也可以说是特征三角形。不知这样说你有没有明白
棱台的特征 1、正棱台的2113侧棱相等,侧面是全等的等腰梯形。各5261等腰梯形4102的高相等,它叫做正棱台的1653斜高;2、正棱台的两底面以及平行于底面的截面是相似正多边形;3、正棱台的两底面中心连线、相应的边心距和斜高组成一个直角梯形;两底面中心连线、侧棱和两底面相应的半径也组成一个直角梯形。4、棱台各棱的反向延长线交于一点。5、棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台。6、下底面和上底面:原棱锥的底面和截面 分别叫做棱台的下底面和上底面。7、侧面:原棱锥的侧面也叫做棱台的侧面(截后剩余部分)。8、侧棱:原棱锥的侧棱也叫棱台的侧棱(截后剩余部分)。9、顶点:上底面和侧面,下底面和侧面的公共点叫做棱台的顶点。棱台的表示:用表示底面的各顶点的字母表示。如:棱台ABCD-A’B’C’D’。底面是三角形,四边形,五边形-的棱台分别叫三棱台,四棱台,五棱台。扩展资料棱台的体积取决于两底面之间的距离(棱台的高),以及原来棱锥的体积。设h为棱台的高,为棱台的上下底面积,V为棱台的体积。由于棱台是由一个平面截去棱锥的一部分(也就是和原来棱锥相似的一个小棱锥)得到,所以计算体积的时候,可以先算出。
什么是正棱台?什么是正棱锥? 如果一个棱锥的底面是正多边形,且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥.正棱锥的性质(1)正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高);(2)正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形;(3)正棱锥的侧棱与底面所成的角都相等;正棱锥的侧面与底面所成的二面角都相等;(4)正棱锥的侧面积:如果正棱锥的底面周长为c,斜高为h’,那么它的侧面积是 s=1/2ch‘.由正棱锥截得的棱台叫做正棱台.正棱台的性质:(1)正棱台的侧棱相等,侧面是全等的等腰梯形.各等腰梯形的高相等,它叫做正棱台的斜高;(2)正棱台的两底面以及平行于底面的截面是相似正多边形;(3)正棱台的两底面中心连线、相应的边心距和斜高组成一个直角梯形;两底面中心连线、侧棱和 两底面相应的半径也组成一个直角梯形.正棱台正棱台各侧面的高叫做棱台的斜高.S=(c+c')h'/2(侧面积)