三角形余弦定理的公式。 a^2=b^2+c^2-2bc*cosAb^2=c^2+a^2-2ac*cosBc^2=a^2+b^2-2ab*cosCa,b,c分别是角A,B,C所对的边
用余弦或正弦定理怎么求三角形面积 设△2113ABC,正弦定理:a/sinA=b/sinB=c/sinC,已知∠B,AB=c,BC=a,求△ABC面积。5261S=1/2·acsinB。推导过程4102:正弦定理:过A作AD⊥1653BC交BC于D,过B作BE⊥AC交AC于E,过C作CF⊥AB交AB于F,有AD=csinB,及AD=bsinC,csinB=bsinC,得b/sinB=c/sinC,同理:a/sinA=b/sinB=c/sinC。三角形面积:S=1/2·AD·BC,其中AD=csinB,BC=a,S=1/2·acsinB。同样:S=1/2·absinC,S=1/2·bcsinA。三角形面积=邻边×邻边×2邻边夹角的正弦S=1/2absinCS=1/2acsinBS=1/2bcsinA扩展资料:正弦定理:a/sin A=b/sin B=c/sin C=2R其中:R 为三角形外接圆半径,A、B和C分别为∠A、∠B 和∠C的度数,a、b、c分别为∠A、∠B 和∠C的对边长度。余弦定理:a^2=b^2+c^2 – 2bc*cos Ab^2=a^2+c^2 – 2ac*cos Bc^2=a^2+b^2 – 2ab*cos C其中:A、B和C分别为∠A、∠B 和∠C的度数,a、b、c分别为∠A、∠B 和∠C的对边长度。
三角形余弦定理 余弦定理(第二余2113弦定理5261)余弦定理是揭示三角形边角关系4102的重要定理,直接运用它可解决一类已知1653三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。直角三角形的一个锐角的邻边和斜边的比值叫这个锐角的余弦值余弦定理性质对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C,则满足性质—a^2=b^2+c^2-2·b·c·cosAb^2=a^2+c^2-2·a·c·cosBc^2=a^2+b^2-2·a·b·cosCcosC=(a^2+b^2-c^2)/(2·a·b)cosB=(a^2+c^2-b^2)/(2·a·c)cosA=(c^2+b^2-a^2)/(2·b·c)(物理力学方面的平行四边形定则中也会用到)第一余弦定理(任意三角形射影定理)设△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有a=b·cos C+c·cos B,b=c·cos A+a·cos C,c=a·cos B+b·cos A。余弦定理证明平面向量证法如图,有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小)∴c·c=(a+b)·(a+b)c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a|b|Cos(π-θ)(以上粗体字符表示向量)。