如图,正四棱柱ABCD-A (1)以CD,CB,CC1,分别为x,y,z轴,建立空间直角坐标系,设AB=a,AA1=b,则D(a,0,0),A(a,a,0),B(0,a,0),C1(0,0,b),A1(a,a,b)-分2分∴DB=(?a,a,0),DC.
如图,在正四棱柱 C 建立如图所示的空间直角坐标系,则 A(1,0,0),B(1,1,0),C(0,1,0),C 1(0,1,2),设点 P 的坐标为(0,λ,2 λ),λ∈[0,1],点 Q 的坐标为(1-μ,μ,0),μ∈[0,1],∴PQ=.
如图,在正四棱柱ABCD-A 建立如图所示的空间直角坐标系D-xyz,则D(0,0,0),A(2,0,0),C(0,2,0),B(2,2,0),E(1,2,0),F(0,2,2).(1)EF=(-1,0,2).易得平面ABCD的一个法向量为n=(0,0,1),设EF与n的夹角为θ,则cosθ═255,EF与平面ABCD所成的角的余弦值为55.(2)EF=(-1,0,2),DF=(0,2,2).设平面DEF的一个法向量为m,则m?DF=0,m?EF=0,可得m=(2,-1,1),∴cos,n>;=m?n|m|n|=66,二面角F-DE-C的余弦值为66.