什么是数据挖掘? 简单地说,数据挖2113掘5261是从大量数据中提取或‘挖掘’4102知识。该术语实际上有点用词不1653当。数据挖掘应当更正确地命名为‘从数据中挖掘知识’,不幸的是它有点长。许多人把数据挖掘视为另一个常用的术语‘数据库中知识发现’或KDD的同义词。而另一些人只是把数据挖掘视为数据库中知识发现过程的一个基本步骤。数据挖掘是一个用数据发现问题、解决问题的学科。通常通过对数据的探索、处理、分析或建模实现。我们可以看到数据挖掘具有以下几个特点:基于大量数据:并非说小数据量上就不可以进行挖掘,实际上大多数数据挖掘的算法都可以在小数据量上运行并得到结果。但是,一方面过小的数据量完全可以通过人工分析来总结规律,另一方面来说,小数据量常常无法反映出真实世界中的普遍特性。非平凡性:所谓非平凡,指的是挖掘出来的知识应该是不简单的,绝不能是类似某著名体育评论员所说的“经过我的计算,我发现了一个有趣的现象,到本场比赛结束 为止,这届世界杯的进球数和失球数是一样的。非常的巧合!那种知识。这点看起来勿庸赘言,但是很多不懂业务知识的数据挖掘新手却常常犯这种错误。隐含性:数据挖掘是要发现深藏在数据内部的知识,而不是那些直接。
用于数据挖掘的分类算法有哪些,各有何优劣? To go back to the particularquestion of logistic regression vs.decision trees(which I'll assume to be aquestion of logistic regression vs.random forests)and 。
用于数据挖掘的聚类算法有哪些,各有何优势? 如果真要做全面介绍的话,有可能是一部专著的篇幅。即使是做综述性的介绍,一篇三五十页的论文也可以写成…