对我国古代数学成就天元术的发展作出重要贡献的是什么? 对我国古代数学成就天元术的发展作出重要贡献的是李冶。李冶在前人的基础上,将天元术改进成一种更简便而实用的方法。当时,北方出了不少算书,除《铃经》外,还有《照胆》、《如积释锁》、《复轨》等,这无疑为李冶的数学研究提供了条件。他在桐川得到了洞渊的一部算书,内有九客之说,专讲勾股容圆问题。此书对他启发甚大。为了能全面、深入地研究天元术,李冶把勾股容圆(即切圆)问题作为一个系统来研究。他讨论了在各种条件下用天元术求圆径的问题,写成《测圆海镜》十二卷,这是他一生中的最大成就。扩展资料李冶由于摆脱了几何思维束缚,在方程理论上取得了四项进展:第一,他改变了传统的把常数项看作正数的观念,常数项可正可负,而不再拘泥于它的几何意义。第二,李冶已能利用天元术熟练地列出高次方程。在这里,未知数已具有纯代数意义,二次方并非代表面积,三次方程也并非代表体积。第三,李冶完整解决了分式方程问题,他已懂得用方程两边同乘一个整式的方法化分式方程为整式方程。第四,李冶已懂得用纯代数方法降低方程次数。当方程各项含有公因子xn(n为正整数)时,李冶便令次数最低的项为实,其他各项均降低这一次数。此外,李冶还发明了负号,他的。
对我国古代数学成就天元术的发展 天元术62616964757a686964616fe4b893e5b19e31333433653362天元术是利用未知数列方程的一般方法,与现代代数学中列方程的方法基本一致,在古代数学中,列方程和解方程是相互联系的两个重要问题。“天元”二字首次出现在北宋数学家蒋周的《益古集》中。此后,李文一的《照胆》,石信道的《钤经》,刘汝谐的《如积释锁》,李思聪的《洞渊九容》等著作均对“天元术”进行了一定阐述。但这些方法不系统,一般浅谈辄止。对天元术贡献最大的数学家当属金元人李冶和朱世杰。李冶的《测圆海镜》、《益古演段》,朱世杰的《算学启蒙》、《四元玉鉴》都系统地介绍了用天元术建立二次方程。公元1248年,12卷的《测圆海镜》的天元术专著诞生。从此书开始,文词代数演变成符号代数。《测圆海镜》是一本高雅、正宗的数学专著。其高雅之处有三:一是总结性强。该书第一卷“识别杂记”阐述了用勾股弦求内切圆直径的方法,这些方法都是整合前代数学家所成。该书600多条定义,就是古代勾股容圆的总结。从第二卷起,他总结出一套行之有效的天元术程序,并用182种方法先后解答了148个问题。二是专业度高。书中所列的天元术理论,勾股形解法,数学抽象化的新起点等知识,都是当时最先进的。
我国古代有哪些著名的数学著作 1、《张丘建算经》:中国e5a48de588b662616964757a686964616f31333431336230古代数学著作。(约公元5世纪)现传本有92问,比较突出的成就有最大公约数与最小公倍数的计算,各种等差数列问题的解决、某些不定方程问题求解等。2、《四元玉鉴》:《四元玉鉴》是元代杰出数学家朱世杰的代表作,其中的成果被视为中国筹算系统发展的顶峰。是一部成就辉煌的数学名著,受到近代数学史研究者的高度评价,认为是中国数学著作中最重要的一部,同时也是中世纪最杰出的数学著作之一。3、《数书九章》:《数书九章》是对《九章算术》的继承和发展,概括了宋元时期中国传统数学的主要成就,标志着中国古代数学的高峰。当它还是抄本时就先后被收入《永乐大典》和《四库全书》。1842年第一次印刷后即在中国民间广泛流传。秦九韶所创造的正负开方术和大衍求一术长期以来影响着中国数学的研究方向。焦循、李锐、张敦仁、骆腾凤、时曰醇、黄宗宪等数学家的著述都是在《数书九章》的直接或间接影响下完成的。秦九韶的成就也代表了中世纪世界数学发展的主流与最高水平,在世界数学史上占有崇高的地位。4、《九章算术》:《九章算术》确定了中国古代数学的框架,以计算为中心的特点,密切。