如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m. (1)设所求抛物线的解析式为:y=ax2(a≠0),由CD=10m,可设D(5,b),由AB=20m,水位上升3m就达到警戒线CD,则B(10,b-3),把D、B的坐标分别代入y=ax2得:25a=b100a=b?3,解得a=?125b=?1.y=?125x2;(2)∵b=-1,拱桥顶O到CD的距离为1m,10.2=5(小时).所以再持续5小时到达拱桥顶.如图所示,有一座抛物线形拱桥,桥下面的正常水位AB宽20m,水位上升3m就达。。。(结合九下二次函数知识) 解:(1)依题意可设抛物线的解析式为,y=ax^2,点O到CD的距离为m,则D(5,-m),B(10,-3-m),有m=25a,-3-m=100a,得a=-1/25.所以,y=-1/25x^2(2)船到达桥的时间 t=35/5=7(小时),水位到达CD处的时间T=3/0.25=12(小时),因为t所以该船能安全通过此桥。如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时 (1)设所求抛物线的解析式为:y=ax2(a≠0),由CD=10m,可设D(5,b),由AB=20m,水位上升3m就达到警戒线CD,则B(10,b-3),把D、B的坐标分别代入y=ax2得y=-1/25x2b=-1,2.∴拱桥顶O到CD的距离为1m,∴1/0.2=5小时如图有一座抛物线形拱桥,桥下面在正常水位时AB=20m,水位上升3m就达到警戒线CD,这 (1)设这个抛物线的解析式为f(x)=ax^2+bx+c由图可知f(0)=0,f(x)=f(-x)所以c=0,ax^2+bx+c=a^2-bx+c由ax^2+bx+c=a^2-bx+c可得b=0所以f(x)=ax^2由已知可得,-f(10)+f(5)=3,即-100a+25a=-75a=3解得a=-3/75,f(x)=-3/75x^2综上 在如图所示的坐标系中求抛物线的解析式为y=-3/75x^2(2)当x=5时,y=-1,即从警戒线到拱桥顶的距离为1米从警戒线能到拱桥顶所需时间为 1/0.2=5(小时)综上 从警戒线开始,再持续5小时才能到拱桥顶如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20米 解:根据题意C(-5,-h),D(5,-h),A(-10,-h-3),B(10,-h-3)设函数解析式为y=ax^2(∵过原点)将C、A值代入得:h=25ah-3=100a解得:a=-1/25解析式:y=-x^2/25再将C代入解析式中解得h=1米(2)、∵水位上升速度为0.2m/ht=h/v=1/0.2=5h如图 有一座抛物线形拱桥,桥下面在正常水位时,AB宽20m,水位距拱桥最高点5m 1.以拱桥最高点为原定,水平方向为x轴,垂直方向为y轴,建立坐标系则,抛物线方程可写为:y=ax^2,过点(10,-5)5=a*100a=-1/20抛物线方程:y=-(1/20)x^22.水面上升:0.2*15=3mC,D点坐标(x,-2)2=-(1/20)x^2x^2=40x=-2(根号10)水面的宽=4(根号10)如图有一座抛物线形拱桥,桥下面在正常水位是AB宽20米,水位上升3m就达到警戒线CD,这是水面宽度为10米... 将拱桥顶置于O(0,0),口向下,设为y=ax^2对于正常AB水位(10,y),y=100a对于警戒CD水平为(5,y+3),y+3=25a求得a=-1/25,方程则为y=-1/25 x^2易求得,警戒水位的y=-1,即离顶1M故t=1/0.2=5小时。如图所示,有一座抛物线形拱桥,桥下面的正常水位AB宽20m,水位上升3m就达。。。(结合九下二次函数知识) (1)设二次函数解析式为y=ax^2+bx+c因为函数顶点是原点,所以b=c=0,a因为AB=20,CD=10,所以,把x=10 y=3+m和x=5,y=m分别代入y=ax^2,得,3+m=100a 和m=25a,解此方程组,得a=3/75,m=1,所以二次函数解析式为 y=-3x^2/75(2)设CD中点为点E,AB中点为点F,所以EF=3因为船速为5km/小时,距离此桥35km,所以船到达桥的时间t=35/5=7小时,因为之后水位每小时上涨0.25m,所以水从点F涨到点E的时间t=3/0.25=12小时>7小时,所以能安全通过此桥如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m,如果水位上升2m,就将达到警戒线CD 解:以AB所在的直线为x轴,AB中点为原点,建立直角坐标系,则抛物线的顶点E在y轴上,且B、D两点的坐标分别为(5,0)、(4,2)设抛物线为y=ax 2+k.由B、D两点在抛物线上,有解这个方程组,得,所以顶点的坐标为(0,)则OE=0.1=(h)所以,若洪水到来,水位以每小时0.1m速度上升,经过 小时会达到拱顶。如图有一座抛物线形拱桥,桥下面在正常水位时AB=20m,水位上升3m就达到警戒线CD 解:(1)设所求抛物线的解析式为:y=ax2.设D(5,b),则B(10,b﹣3),把D、B的坐标分别代入y=ax2得:解得.y=;(2)∵b=﹣1,拱桥顶O到CD的距离为1,5小时.所以再持续5小时到达拱桥顶
随机阅读
- 广州必吃的美食有哪些?有什么美食榜单推荐? 松哥油焖大虾天河
- 油酸二乙醇酰胺 6501 求椰子油酸二乙醇酰胺 学名叫什么用途是什么
- 近视眼激光手术 滨州 近视眼.已经有4年多了.19到20能做激光手术吗?
- 瑞兹守护者雕像特效
- 三江花园道壹号怎么样?好不好?值不值得买? 杭州三江花园道壹号出租房源
- cf全装都是什么装备。要多少钱。再求一位教我狙击师傅 cf飞段的师傅
- 横店? 横店四海中学还招生吗
- 一个钢蹦儿番外百度云 一个钢镚儿txt百度云 求巫哲的一个钢镚儿的百度云,谢谢啦
- 国资委下属企业属何种性质 沈阳市属企业名单
- 从南宁去德天瀑布和通灵大峡谷的游行攻略? 通灵大峡谷到德天瀑布
- 颈椎病歪斜舌 舌头歪和颈椎有关系吗?
- 怎样变得不自以为是 人怎样变的不自以为是呢?
- 苏黎世去比尔 和这个世界交手的这么多年,你是否依然风采依旧,兴趣盎然?
- 有永久性脱毛马 怎样永久性脱毛 ?
- 05款宝来发动机压缩比 宝来的发动机压缩比是多少?
- 上海 上海后滩建设
- 如何选择扭矩传感器,有那些注意事项 扭力传感器的调零方式
- 佛山市南庄堤田村有多少个本地姓氏? 佛山市南庄镇堤田村范围
- 段园镇牛眠村小冯庄 淮北市段圆镇牛眠村小冯庄在塌陷区为什么不搬迁房子都是裂缝难道政府不知道吗为什么不为老百姓办点实事
- 合肥天威2010招聘的待遇,请详细说明 合肥天威结构 还我加班费