为什么用matlab算一个逆矩阵,会出不来呢,数量级也不是太夸张啊,哪位大神能帮我看看 由于你的数值偏小,用inv(A)函数求,矩阵A会被误认为是接近奇异。结果可能是不准确的。但可以用pinv(A)来求解。结果如下:A=。7×7矩阵vpa(pinv(A))ans=[-0.0028082378796503988487021086228879,-0.0028420087857282789155222157972958,-0.0028974083724634396193320373669167,-0.0029669574159484355183047377124694,-0.0031144443970727029094569537903681,-0.0025064982827983171148611418743712,0.015622518407918140406764884176027][-0.0000019404712378900838716511405984688,-0.0000019638066798041950273786583613944,-0.0000020020873772584887440690541021704,-0.0000020501452428272607331693425797292,-0.000002152057636684667070415492157176,-0.0000017319714475838532178431994693057,0.000010795042632975462246766942819853][-0.00000000254886182564122915772225247996,-0.0000000025795135642077172866531558368189,-0.0000000026297963030058351898249687113567,-0.0000000026929216184336111098589497598373,-0.0000000028267863236542433004499237349455,-0.0000000022749916720125912425131831914654,0。.
为什么矩阵的对应行列式不为0时此矩阵才有逆矩阵 如果百两个方阵A,B,C,有度问 AB=C的话,则有det(A)*det(B)=det(C)(det表示取行列答式)AA^回-1=I则det(A)*det(A^-1)=det(I)=1上是要满足,答det(A)必不能为0
为什么只有方阵才能求逆矩阵?比如A是3行两列的 B是两行三列的 AB是三行三列的BA是两行两列的都是E啊 比如A是3行两列的 B是两行三列的 AB是三行三列的BA是两行两列的都是E啊:首先对于任意的A(3*2),满足AB=E的矩阵B可能还存在并唯一,但满足BA=E的矩阵B一般是不唯一的.再说此B非彼B.满足BA=E的矩阵B一般是不唯一的:这.