ZKX's LAB

正三棱锥a-bcd内接 如图,半球O内有一内接正三棱锥A-BCD(底面△BCD为等边三角形,顶点A在底面的射影为ABCD的中心),且△BCD内接于圆O,当半球O的体积为2

2021-04-09知识9

如图,半球O内有一内接正三棱锥A-BCD(底面△BCD为等边三角形,顶点A在底面的射影为ABCD的中心),且△BCD内接于圆O,当半球O的体积为2 设球的半径为r,则半球O的体积为23π,43πr3=2×23π,r=3.连接AO,则AO⊥平面BCD,根据正弦定理可得,BC=3,在Rt△AOD中,AD=(3)2+(3)2=6,棱锥A-BCD的所有棱长之和为9+36.故答案为:9+36.

正三棱锥A-BCD内接于球O,且底面边长为 如图,设三棱锥A-BCD的外接球球心为O,半径为r,BC=CD=BD=3,AB=AC=AD=2,令AM⊥平面BCD,则M为正△BCD的中心,则DM=1,AM=3,OA=OD=r,由图知(3-r)2+1=r2,解得r=23,所以S=4πr2=163π.故答案为:163π

正三棱锥的内接球和外接球的半径怎么求 1、正三棱锥的外接球半径求法:设A-BCD是正三棱锥,侧棱长为a,底面边长为b,则外接球的球心一定在这个三棱锥的高上.设高为AM,连接DM交BC于E,连接AE,然后在面ADE内做侧棱AD的垂直平分线交三棱锥的高AM于O,则0就是外接球的球心,AO,DO是外接球的半径.(当三棱锥的侧棱与它的对面所成的线面角小于90度时,即角DAE小于90度时,球心在棱锥的内部;当线面角等于90度时,球心恰好在底面正三角形的中心M上;当线面角大于90度时,球心在棱锥的外部,在棱锥高AM的延长线.下面我给出的解法是第一种情况,球心在棱锥的内部.另两种情况你自己可以照理推出.)设AO=DO=R则,DM=2/3DE=2/3*2分之根号3倍的b=b/根号3AM=根号(a^2-b^2/3),OM=AM-A0=根号(a^2-b^2/3)-R由DO^2=OM^2+DM^2得,R=根号3倍的a^2÷2倍的根号(3a^2-b^2)2、内接球半径同样是这个三棱锥.内接球的球心也一定在这个三棱锥的高上.设高为AM,连接DM交BC于E,连接AE,然后在面ADE内做角AED的平分线交三棱锥的高AM于O,做OF垂直于AE,则0就是内接球的球心,OM=OF=rAE=根号(a^2-b^2/4)FE=ME=1/3AM=6分之根号3倍的b,AF=AE-FE=根号(a^2-b^2/4)-6分之根号3倍的bAO=AM-r=根号(a^2-b^2/3)-r由AO^2=OF^2+AF^2得r=。

#正三棱锥a-bcd内接

随机阅读

qrcode
访问手机版