正三棱锥的内接球和外接球的半径怎么求 1、正三棱锥的外接球半径求法:设A-BCD是正三棱锥,侧棱长为a,底面边长为b,则外接球的球心一定在这个三棱锥的高上.设高为AM,连接DM交BC于E,连接AE,然后在面ADE内做侧棱AD的垂直平分线交三棱锥的高AM于O,则0就是外接球的球心,AO,DO是外接球的半径.(当三棱锥的侧棱与它的对面所成的线面角小于90度时,即角DAE小于90度时,球心在棱锥的内部;当线面角等于90度时,球心恰好在底面正三角形的中心M上;当线面角大于90度时,球心在棱锥的外部,在棱锥高AM的延长线.下面我给出的解法是第一种情况,球心在棱锥的内部.另两种情况你自己可以照理推出.)设AO=DO=R则,DM=2/3DE=2/3*2分之根号3倍的b=b/根号3AM=根号(a^2-b^2/3),OM=AM-A0=根号(a^2-b^2/3)-R由DO^2=OM^2+DM^2得,R=根号3倍的a^2÷2倍的根号(3a^2-b^2)2、内接球半径同样是这个三棱锥.内接球的球心也一定在这个三棱锥的高上.设高为AM,连接DM交BC于E,连接AE,然后在面ADE内做角AED的平分线交三棱锥的高AM于O,做OF垂直于AE,则0就是内接球的球心,OM=OF=rAE=根号(a^2-b^2/4)FE=ME=1/3AM=6分之根号3倍的b,AF=AE-FE=根号(a^2-b^2/4)-6分之根号3倍的bAO=AM-r=根号(a^2-b^2/3)-r由AO^2=OF^2+AF^2得r=。
正四棱锥的外接球半径怎么求 首先要知道球心在正四棱锥的高上,然后考察正四棱锥的高与底面一顶点构成的三角形,在高上找一点,使该点到正四棱锥的顶点与底面一顶点的距离相等,该点就是球心.设正四棱锥的顶点为P,底面一顶点为A,底面中心为O,又设PA=.
正三棱锥的外接球球心为什么在高上?为什么是高的三分之二? 按我说的在纸上画出正三棱锥ABCD正三棱锥的外接球球心为O点,那么O点到ABCD四点的距离OA,OB,OC,OD是相等的。从O点作底面BCD的垂线0P交底面BCD于P点。因为OB,OC,OD是相等的,可证得PB,PC,PD是相等的.从A点作底面的垂线即高AQ交BCD于Q点,同样可证得QB,QC,QD是相等的.于是证得Q,P是同一点。过同一点底面的垂线只有一条,即OP,AQ是贡献,所以O点在高AQ上。因为OA,OB,OC,OD是相等的,那么可以证得OABC,0BCD,OACD,OABD是体积相等的四个三棱锥,那么0BCD的体积是ABCD的1/4,可证op=h/4,所以AO=3h/4哪来的2/3我就不大清楚了,弄错了吧。