ZKX's LAB

点到直线的距离公式如何推导? 点到直线的距离关系公式推导过程

2020-07-26知识15

如何推导点到直线间的距离公式? 假设直线L0为:AX+BY+C=0,平面上非在线上的任意一点为M(X0,Y0)过点M作垂直于L0的直线L1交L0于点N(X1,Y1),点M到直线L0的距离即为线段MN的长度则有:L1的直线方程为:Y-Y0=-1/A*(X-X0),且有X-X0/Y-Y0=-1/A联立L1与L.点到直线的距离公式如何推导? 设:直线方程y=ax+b 点的坐标(p,q)考虑到要求点到直线的距离,与过该点与已知直线垂直的直线重合,所以先求过已知点与已知直线垂直的直线方程:y=(-1/k)x+(p/k+q)联立两方程求得交点坐标,然后再用平面间两点距离公式求距离.点到直线的距离公式怎么证明? 点到直线距离公式的推导如下:对于点P(x0,y0)作PQ垂直直线Ax+By+C=0于Q作PM平行Y轴,交直线于M;作PN平行X轴,交直线于N设M(x1,y1)x1=x0,y1=(-Ax0+C)/B.PM=|y0-y1|=|y0+(Ax0+C)/B|=|(Ax0+By0+C)/B|同理,设N(x2,y2).y2=y0,x2=(-By0+C)/APN=|(Ax0+By0+C)/A|PM、PN为直角三角形PMN两直角边,PQ为斜边MN上的高PQ=PM×PN/MN=PM×PN/√(PM2+PN2)=|Ax0+By0+C|/√(A2+B2)如果您满意我的回答,手机提问的朋友在客户端右上角评价点【满意】即可。点到直线距离公式推导过程, 设点(m,n)直线方程aX+bY+c=0距离=((am+bn+c)的绝对值)/根号(a^2+b^2)这个,就最熟的了,也最常用了。其他的还真一时想不起来~=|点到直线的距离是怎么推导出来这个公式的? 点M到直线的距离,即过点M向已知直线作垂线,设垂足为N,则垂线段MN的长即是所求2113的点到直线的距离。但如何求此线段的长呢?同学们给出了不同的解决方5261法。方法一:求出过点M且与已知直线aX+bY+c=0(a、b均不为零)垂直的直线方程,而后联立方程组,求出垂足N点的坐标,然后利用两点间的距离4102公式求出点到直线的距离。方法二:过点M分别作垂直于两坐标轴的直线,且交已知直线分别于C、1653D两点,三角形版MCD为直角三角形,点到直线的距离即是直角三角形MCD斜边上的高。而C、D两点的坐标较易求解,利用权平行于坐标轴的两点间的距离公式,可得到两直角边MC、MD的长度,再利用勾股定理求出斜边的长,最后利用等面积法求出点到直线的距离。点到直线距离公式推导过程 求点P(x2,y2)到直线L1:ax+by+c=0距离公式:直线L1:ax+by+c=0的斜率k1为-a/b与他垂直直线L2的斜率k2为b/a根据点斜式求出直线L2的表达式为y-y2=k2(x-x2)解联立方程求交点A(x1,y1)根据两点距离公式求AP间的距离。点到直线的距离公式是什么?以及推导过程 还有很多方法,这是简单的一种求点到直线距离公式推导过程。我初三,麻烦详细一点

#数学#直线方程

随机阅读

qrcode
访问手机版