什么是基因的遗传图谱 物理图谱,两者有何区别 遗传图谱:某一物种的染色体图谱(也就是我们所知的连锁图谱),显示所知的基因和/或遗传标记的相对位置,而不是在每条染色体上特殊的物理位置。采用遗传学分析方法将基因或其它DNA标记按一定的顺序排列在染色体上,这一方法包括杂交实验,家系分析。标记间的距离(遗传图距)用减数分裂中的交换频率来表示,单位为厘摩Centi-Morgan,cM),每单位厘摩定义为1%交换率。遗传学图谱的解像度(分辨率)低,大约只能达到100万碱基对(1Mb)的水平。物理图谱:顾名思义,是DNA中一些可识别的界标(如限制性酶切位点、基因等)在DNA上的物理位置,图距是物理长度单位,如染色体的带区7a64e59b9ee7ad9431333337616466、核苷酸对的数量等两者异同:①遗传图谱是基于重组频率,物理图谱是基于直接测量的DNA结构。②减数分裂重组的频率并不统一沿大多数染色体。有一些热点和冷点在重组和或突变。热点和冷点会导致相当大的格律失真时,遗传图谱和物理地图并排排列时。③遗传图谱表示的是基因或标记间的相对距离,以重组值表示,单位CM④物理图谱表示的是基因或标记间的物理距离,距离的单位为长度单位,如μm或者碱基对数(bp或kp)等。简而言之前者是描述的基因相对位置,后者是。
基因组遗传图谱和物理图谱的异同 通过遗2113传重组所得到的基5261因在具体染色体上线性排列图称为遗4102传连锁图。它1653是通过计算连锁的遗传标志之间的重组频率,确定他们的相对距离,一般用厘摩(cM,即每次减数分裂的重组频率为1%)来表示。绘制遗传连锁图的方法有很多,但是在DNA多态性技术未开发时,鉴定的连锁图很少,随着DNA多态性的开发,使得可利用的遗传标志数目迅速扩增。早期使用的多态性标志有RFLP(限制性酶切片段长度多态性)、RAPD(随机引物扩增多态性DNA)、AFLP(扩增片段长度多态性);80年代后出现的有STR(短串联重复序列,又称微卫星)DNA遗传多态性分析和90年代发展的SNP(单个核苷酸的多态性)分析。物理图谱是利用限制性内切酶将染色体切成片段,再根据重叠序列确定片段间连接顺序,以及遗传标志之间物理距离〔碱基对(bp)或千碱基(kb)或兆碱基(Mb)〕的图谱。以人类基因组物理图谱为例,它包括两层含义,一是获得分布于整个基因组30 000个序列标志位点(STS,其定义是染色体定位明确且可用PCR扩增的单拷贝序列)。将获得的目的基因的cDNA克隆,进行测序,确定两端的cDNA序列,约200bp,设计合成引物,并分别利用cDNA和基因组DNA作模板扩增;比较并纯化特异带;利用STS制备放射性探针与。
SSR分子标记读带方法及使用何种软件进行遗传图谱构建较合适? 条带一般选择读取主条带,也就是最亮也是最锐的一个,条带太多的话,说明引物特异性不是很好,扩增的杂带较多,条带少的话,一般用genemarker或者popgene来处理,方法可以在网上查到的,我最近也才做完SSR,反正我是这么读条带的,我师姐的数据我是用genemarker和popgene来处理的