确定函数定义域 函数定义域定义域 指该函数的有效范围,其关于原点对称是指它有效值关于原点对称。函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合。例如:函数y=2x+1,规定其定义域为-10,10,就是对称的。中文名函数定义域外文名Domain of a function学 科数学目录1 简介2 认识3 定义域4 区别值域5 误区简介f(x)是函数的符号,它代表函数图象上每一个点的纵坐标的数值,因此函数图像上所有点的纵坐标构成一个集合,这个集合就是函数的值域。x是自变量,它代表着函数图象上每一点的横坐标,自变量的取值范围就是函数的定义域。f是对应法则的代表,它可以由f(x)的解析式决定。例如:f(x)=x^2+1,f代表的是把自变量x先平方再加1。x2+1的取值范围(x2+1≥1)就是f(x)=x2+1的值域。如果说你弄清了上述问题,仅仅是对函数f(x)有了一个初步的认识,我们还需要对f(x)有更深刻的了解。认识我们可以从以下几个方面来认识f(x)。第一:对代数式的认识。每一个代数式它的本质就是一个函数。像x2-1这个代数式,它就是一个函数,其自变量是x,对x的每一个值x2-1都有唯一的值与之对应,所以x2-1的所有值的集合就是这个函数的值域。第二:对抽象。
直角坐标系中的图形:1、确定点的位置定义.
为什么旋度和散度可以完全确定一个矢量场? 任意一个向量场记为(P,Q,R),P,Q,R是三个分量,都是空间位置的函数,旋度和散度的表达式就不写了,如果把向量场中的P,Q,R当做未知量的话,散度是标量能确定一个唯一的方程,旋度是矢量能确定三个方程,但实际上旋度中三个.