正三棱锥的底面边长为3,侧棱长为2根号三,则体积为多少?求计算详细过程 郭敦顒回答: 郭敦顒回答:底面三角形的高h0=3sin60°=3×0.866=2.598,底面三角形的面积S=3×2.598/2=3.897,底面等边三角形内心(也是重心、垂心)的边心距a=1.5 tan30°。
正三棱锥的内接球和外接球的半径怎么求 1、正三棱锥的外接球半径求法:设A-BCD是正三棱锥,侧棱长为a,底面边长为b,则外接球的球心一定在这个三棱锥的高上.设高为AM,连接DM交BC于E,连接AE,然后在面ADE内做侧棱AD的垂直平分线交三棱锥的高AM于O,则0就是外接球的球心,AO,DO是外接球的半径.(当三棱锥的侧棱与它的对面所成的线面角小于90度时,即角DAE小于90度时,球心在棱锥的内部;当线面角等于90度时,球心恰好在底面正三角形的中心M上;当线面角大于90度时,球心在棱锥的外部,在棱锥高AM的延长线.下面我给出的解法是第一种情况,球心在棱锥的内部.另两种情况你自己可以照理推出.)设AO=DO=R则,DM=2/3DE=2/3*2分之根号3倍的b=b/根号3AM=根号(a^2-b^2/3),OM=AM-A0=根号(a^2-b^2/3)-R由DO^2=OM^2+DM^2得,R=根号3倍的a^2÷2倍的根号(3a^2-b^2)2、内接球半径同样是这个三棱锥.内接球的球心也一定在这个三棱锥的高上.设高为AM,连接DM交BC于E,连接AE,然后在面ADE内做角AED的平分线交三棱锥的高AM于O,做OF垂直于AE,则0就是内接球的球心,OM=OF=rAE=根号(a^2-b^2/4)FE=ME=1/3AM=6分之根号3倍的b,AF=AE-FE=根号(a^2-b^2/4)-6分之根号3倍的bAO=AM-r=根号(a^2-b^2/3)-r由AO^2=OF^2+AF^2得r=。
侧棱长为2倍根号下3a的正三棱锥V-ABC的侧棱间夹角为60°过AB做截面AOB,则截面三角形AOB的最小周长为:A,(6+2倍根号3)a;B,6a;C,6倍根号3a;D,9a 应该选择A因为正三棱锥V-ABC的侧棱间夹角为60,所以各个边都相等,都等于(2倍根号下3)a.截面AOB,则截面三角形AOB的最小周长,这个面是垂直于VC菱边的,所以这个截面构成的三角形两个边是正三角形的高,一个是边,而高的长度等于3,所以答案应该选择A