ZKX's LAB

点的直线距离公式推导 点到直线距离公式证明

2020-07-26知识15

如何推导点到直线间的距离公式? 假设直线L0为:AX+BY+C=0,平面上非在线上的任意一点为M(X0,Y0)过点M作垂直于L0的直线L1交L0于点N(X1,Y1),点M到直线L0的距离即为线段MN的长度则有:L1的直线方程为:Y-Y0=-1/A*(X-X0),且有X-X0/Y-Y0=-1/A联立L1与L.点到直线距离公式证明 点到直线距离公式的推导如下:对于点P(x0,y0)作PQ垂直直线Ax+By+C=0于Q作PM平行Y轴,交直线于M;作PN平行X轴,交直线于N设M(x1,y1)x1=x0,y1=(-Ax0+C)/B.PM=|y0-y1|=|y0+(Ax0+C)/B|=|(Ax0+By0+C)/B|同理,设N(x2,y2).y.点到直线的距离公式是什么?以及推导过程 还有很多方法,这是简单的一种点到直线的距离公式如何推导? 最低0.27元开通文库会员,查看完整内容>;原发布者:XERO18十二种点到直线距离公式证明方法用高中数学知识推导点到直线的距离公式的方法。已知点P(Xo,Yo)直线l:Ax+By+C=0(A、B均不为0),求点P到直线I的距离。(因为特殊直线很容易求距离,这里只讨论一般直线)《1.用定义法推导》点P到直线l的距离是点P到直线l的垂线段的长,设点P到直线l的垂线为垂足为Q,由l垂直l’可知l’的斜率为B/A《2.用设而不求法推导》《3.用目标函数法推导》《4.用柯西不等式推导》“求证:(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc,即a/c=b/d时等号成立。实为柯西不等式的最简形式,用它可以非常方便地推出点到直线的距离公式。《5.用解直角三角形法推导》设直线l的倾斜角为,过点P作PM∥y轴交l于G(x1,y1),显然Xl=x。所以《6.用三角形面积公式推导》《7.用向量法推导》《8.用向量射影公式推导》《9.利用两条平行直线间的距离处处相等推导》《10.从最简单最特殊的引理出发推导》《11.通过平移坐标系推导》《12.由直线与圆的位置关系推导》点到直线的距离是怎么推导出来这个公式的? 点M到直线的距离,即过点M向已知直线作垂线,设垂足为N,则垂线段MN的长即是所求2113的点到直线的距离。但如何求此线段的长呢?同学们给出了不同的解决方5261法。方法一:求出过点M且与已知直线aX+bY+c=0(a、b均不为零)垂直的直线方程,而后联立方程组,求出垂足N点的坐标,然后利用两点间的距离4102公式求出点到直线的距离。方法二:过点M分别作垂直于两坐标轴的直线,且交已知直线分别于C、1653D两点,三角形版MCD为直角三角形,点到直线的距离即是直角三角形MCD斜边上的高。而C、D两点的坐标较易求解,利用权平行于坐标轴的两点间的距离公式,可得到两直角边MC、MD的长度,再利用勾股定理求出斜边的长,最后利用等面积法求出点到直线的距离。点到直线的距离公式具体推导过程? 高中数学点到直线的距公式的推导:在人教大纲版高二数学上册中,关于点到直线距离公式的推导方法,教材介绍了两种推导方法,并详细给出了利用直角三角形的面积公式推导得出点到直线的距离公式的具体过程。其实关于点到直线的距离公式的推导方法,除上述方法之外,还有其它很多方法,在这些方法中,向量法(利用平面向量的有关知识来推导的方法)是一种行之有效的推导方法。其推导思路简单明了、运算量也较小。上述推导方法利用了向量的数量积知识来进行推导出了点到直线的距离公式,这是一种比较重要有数学思想方法。我们还可将这种思想方法进一步推广到在立体几何中,如何利用空间向量解决求点到平面的距离问题。原发布者:XERO18 十二种点到直线距离公式证明方法用高中数学知识推导点到直线的距离公式的方法。已知点P(Xo,Yo)直线l:Ax+By+C=0(A、B均不为0),求点P到直线I的距离。。点到直线的距离公式的推导 有点到直线的距离公式的啊!若一点p(x0,y0)直线的解析式是ax+by+c=0则点到直线的距离d=(ax0+by0+c)/(a^2+b^2)推导:q(m,n)是直线ax+by+c=0上到p(x0,y0)距离最小的一点,即am+bn+c=0直线斜率k1=-a/b,p(x0,y0)与q(m,n)连成的直线的斜率为k2=(y0-n)/(x0-m)因为垂直,所以k1*k2=-1即(y0-n)/(x0-m)=-b/ad^2=(y0-n)^2+(x0-m)^2

#数学#直线方程

随机阅读

qrcode
访问手机版