为什么对一般的质点系而言,一对内力的功不等于零?请简要阐述··我会按先后顺序选择给分 W=F.S功W等于力duF乘位移S。一对内力zhi(F和F')大小相等,方向相反,F=-F'。当dao一对内力(F和F')没有相对位移(即它们对参版照物的权位移S和S'相等)时,W+W'=FS+F'S'=0.它们所做功的代数和为零。如果它们有相对位移,S与S'不相等,W+W'=FS+F'S'=FS-FS'=F(S-S')就不等于零
阐述质点系中的内力为什么不能改变质点系的总动量? 内力的定义是质点系内部的不同部分之间的力.根据作用力与反作用力的关系,那么每存在一个这样的内力,就必然存在其反作用力,这个反作用力大小相等方向相反.这两个力共生共灭,持续时间相同.并且这个反作用力也是一个内力,因为,反作用力和作用力只是将施力物体和受力物体互换了,它们依旧是质点系内部的不同部分.那么当质点系对不同部分的动量和冲量分别进行进行分析时,这个内力和它的反作用力就会被分别在不同的部分中进行计算.由于力的大小相同方向相反,时间相同,因此这两个力的冲量就应该始终保持大小相同反向相反.那么当进行冲量之合的计算时,这两个冲量就应当互相相加为0.像这样,每有一个内力产生冲量,它的同为内力的反作用力也同时产生大小相同方向相反的冲量,两者互相抵消为0,最终所有的内力冲量都互相抵消为0了.因此系统的总冲量不受到内力的影响.
质点系的动量为零,则质点系的角动量也为零. 楼上网友的回答,后面答非所问,非常牵强附会。楼主的问题是:质点系的动量为零,则质点系的角动量也为零。是对还是错?答:错!简洁解释:1、质点系的动量为0,但质点系的角动量不一定为0。它们可以做类似于太阳系这样的公转加自转的运动。2、质点系的角动量为0时,质点系的动量也不一定为0.它们可以做类似于一颗流星划过天空的平动运动。细致解释:1、动量守恒的前提是:系统受到的合外力为0。A、在这样的前提之下,不能排除系统受到力偶couple的影响。B、在力偶的作用下,系统的整体动量不变,整体的e799bee5baa6e997aee7ad94e58685e5aeb931333337396332速度不变,也就是质心的速度不变,质心的动量不变。但是整体的角动量在增加。也就是说,整体的转动速度会越来越快。2、角动量守恒的前提是:系统受到的合外力矩为0。A、在这样的前提下,不能排除系统整体上受到一个合外力的作用,而仅仅只是合外力的力矩为0。B、合外力作用在质心上,系统虽未转动加速,但却平动加速了,此时动量守恒,而角动量却守恒。动量守恒=momentum conservation;角动量守恒=angular momentum conservation;合外力=resultant forc;合外力矩=resultant moment。请参看下面的。