.如图所示,正四棱锥 (1)取AD中点M,连接MO,PM,依条件可知AD⊥MO,AD⊥PO,则∠PMO为所求二面角P-AD-O的平面角.∵PO⊥面ABCD,∴PAO为侧棱PA与底面ABCD所成的角.∴tan∠PAO=.设AB=a,AO=a,∴PO=AO·tan∠POA=a,tan∠PMO=.∴PMO=60°.(2)连接AE,OE,∵OE∥PD,∴OEA为异面直线PD与AE所成的角.∵AO⊥BD,AO⊥PO,∴AO⊥平面PBD.又OE平面PBD,∴AO⊥OE.∵OE=PD=a,∴tan∠AEO=.(3)延长MO交BC于N,取PN中点G,连BG,EG,MG.∵BC⊥MN,BC⊥PN,∴BC⊥平面PMN.∴平面PMN⊥平面PBC.又PM=PN,∠PMN=60°,∴△PMN为正三角形.∴MG⊥PN.又平面PMN∩平面PBC=PN,∴MG⊥平面PBC.取AM中点F,∵EG∥MF,∴MF=MA=EG,∴EF∥MG.∴EF⊥平面PBC.点F为AD的四等分点.
正四棱锥S-ABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SO=OD。 为顶点在底面上的射影,P 为侧棱 SD 的中点,且 SO=OD,则直线 BC 与平面 PAC 所成的角是_ 30°【解析】如图所示,以O为原点建立空间直角坐标系O-xyz。.
在正四棱锥 30°如图,以 O 为原点建立空间直角坐标系 O-xyz.设 OD=SO=OA=OB=OC=a.则 A(a,0,0),B(0,a,0),C(-a,0,0),P.则=(2 a,0,0),=,(a,a,0),设平面 PAC 的一个法向量为 n,设 n=(x,y,z),则 解得 可取 n=(0,1,1),则cos〈,n〉=,〈,n〉=60°,直线 BC 与平面 PAC 所成的角为90°-60°=30°.