ZKX's LAB

随机微分方程强解和弱解 所有偏微分方程(PDE)解析解都找到的话,对科学界有什么影响?

2020-07-26知识18

关于微分方程和差分方程的关系 差分方程是微分方程的离散化。大部分的常微分方程求不出十分精确的解,而只能得到近似解。当然,这个近似解的精确程度是比较高的。另外还应该指出,用来描述物理过程的微分方程,以及由试验测定的初始条件也是近似的,这种近似之间的影响和变化还必须在理论上加以解决。常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。向左转|向右转扩展资料在数学上,递推关系(recurrence relation),也就是差分方程(difference equation),是一种递推地定义一个序列的方程式:序列的每一项目是定义为前一项的函数。某些简单定义的递推关系式可能会表现出非常复杂的(混沌的)性质,他们属于数学中的非线性分析领域。所谓解一个递推关系式,也就是求其解析解,即关于n的非递归函数。微分方程和积分方程有哪些典型的物理意义?实际中哪个更常用? 谢邀。问的是物理意义,但既然邀请到我了,我就从理论经济学专业角度来说一下。仅从经济学角度看,微分方…偏微分方程入门选择哪些教材比较好? 如果你是倾向理论方面的学习,推荐 Lawrence C.Evans 的 Partial Differential Equations,一本很好的入门教科书,广泛地涉及了偏微分方程理论(PDE)中的重要内容,包括几类典型的线性方程的公式求解,Sobolev 空间中的弱解理论,以及各种处理适定性问题的现代方法,而且在附录里,对涉及到的一些基础知识作了全面详细的介绍。下面简单地介绍下。Evans的全书共11章,主要内容有三部分:1.公式求解.(Representation Formulas for Solutions)介绍了线性输运方程、Laplace方程或Poisson方程、热方程和波动方程的基本求解,对古典解的性质作了讨论。所涉及到的知识点有:平均值公式,基本解(fundamental solution),格林函数(Green's function),能量方法(Energy methods),球面平均(spherical means)等。介绍了求解定解问题的几种方法:分离变量法,相似解,傅里叶变化和拉普拉斯变换,Hopf-Cole变换等。除此,还介绍了一阶PDE的基本求解。这些内容基本上是本科偏微分方程课程里所讲的范围。2.线性偏微分方程理论(Theorey for Linear Partial Differential Equations).介绍了Sobolev空间,包括光滑函数逼近,Sobolev嵌入关系(不等式)等。介绍了二阶线性椭圆、抛物以及双曲。所有偏微分方程(PDE)解析解都找到的话,对科学界有什么影响? 最近开始学 PDE。感觉是本科很多课程学到一定高度才有能力解决的问题。想起之前一个提问有人大概是说把一…

#微积分#微分方程

随机阅读

qrcode
访问手机版