ZKX's LAB

已知一个球与一个正三棱柱的三个侧面和两个底面都相切,这个球的表面积是4π,则这个三棱柱的体积是 ___.

2021-04-06知识6

已知一个球与一个正三棱柱的三个侧面和两个底面相切,若这个球的体积是32π3,则这 由43πR3=32π3,得R=2.∴正三棱柱的高h=4.设其底面边长为a,则13?32a=2.∴a=43.∴V=34(43)2?4=483.故答案为:483

已知一个球与一个正三棱柱的三个侧面和两个底面都相切,若这个球的表面积为12π,则这个正三棱柱的体积为 由球的表面积公式,得4πR2=12π,R=3.正三棱柱的高h=2R=23.设正三棱柱的底面边长为a,则其内切圆的半径为:13?32a=3,a=6.该正三棱柱的体积为:V=S底?h=12?a?a?sin60°?h=34×6×6×23=54.故答案为:54

正三棱柱内有一个内切球,已知球的半径为R,则这个正三棱柱的底面边长 这道题是解决正三2113角形的性质问题,5261底边长为二倍的根号三。由题4102意可得截面图,1653如下图。已知是一个正三棱柱,因此截面是一个正三角形内内切一个圆。已知圆的半径为R,可以将圆心和三角形的一个顶点连接可以得到一个顶角为30°的直角三角形,因此由三角函数可得底边的一半长度为根号三倍的R,因此底边长为二倍的根号三。扩展资料本题中运用了正三角形的性质,正三角形的其他性质如下:1、等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。2、等边三角形每条边上的中线、高线和角平分线互相重合。(三线合一)3、等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或角的平分线所在的直线。4、等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)5、等边三角形内任意一点到三边的距离之和为定值。(等于其高)6、等边三角形拥有等腰三角形的一切性质。(因为等边三角形是特殊的等腰三角形)参考资料:-正三角形的性质

#已知一个球与一个正三棱柱

随机阅读

qrcode
访问手机版